References
-
Tripathi, R. et al. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Frontiers in Plant Science, 3116 (2022).
-
Coomey, J. H., Sibout, R. & Hazen, S. P. Grass secondary cell walls, Brachypodium distachyon as a model for discovery. New Phytol. 227, 1649–1667 (2020).
-
Kolkman, J. M., Moreta, D. E., Repka, A., Bradbury, P. & Nelson, R. J. Brown midrib mutant and genome-wide association analysis uncover lignin genes for disease resistance in maize. The Plant Genome 16, e20278 (2023).
-
Pérez, C. D. P. et al. Boron, zinc and manganese suppress rust on coffee plants grown in a nutrient solution. Eur. J. Plant Pathol. 156, 727–738 (2020).
-
Sánchez-Sanuy, F. et al. Iron induces resistance against the rice blast fungus Magnaporthe oryzae through potentiation of immune responses. Rice 15, 68 (2022).
-
Bellincampi, D., Cervone, F. & Lionetti, V. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions. Front. Plant Sci. 5, 228 (2014).
-
Lahlali, R. et al. Cell wall biomolecular composition plays a potential role in the host type II resistance to Fusarium head blight in wheat. Front. Microbiol. 7, 910 (2016).
-
Martins, D., Araújo, S. d. S., Rubiales, D. & Vaz Patto, M. C. Legume crops and biotrophic pathogen interactions: A continuous cross-talk of a multilayered array of defense mechanisms. Plants 9, 1460 (2020).
-
Saberi Riseh, R., Gholizadeh Vazvani, M., Taheri, A. & Kennedy, J. F. Pectin-associated immune responses in plant-microbe interactions: A review. Int. J. Biol. Macromolec. 132790 (2024).
-
Jian, Y. et al. How plants manage pathogen infection. EMBO Rep. 25, 31–44 (2024).
-
Miedes, E., Vanholme, R., Boerjan, W. & Molina, A. The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 5, 100584 (2014).
-
Bratovcic, A. Antioxidant enzymes and their role in preventing cell damage. Acta Sci. Nutr. Health 4, 01–07 (2020).
-
Freitas, C. D. et al. Class III plant peroxidases: From classification to physiological functions. Int. J. Biol. Macromol. 263, 130306 (2024).
-
Khan, T. A., Hilal, B. & Fariduddin, Q. in Hydrogen Peroxide 90–100 (CRC Press).
-
Zhai, X. et al. Overexpression of the peroxidase gene ZmPRX1 increases maize seedling drought tolerance by promoting root development and lignification. The Crop Journal 12, 753–765 (2024).
-
Zhang, F. et al. Maize peroxidase ZmPrx25 modulates apoplastic ROS homeostasis and promotes seed germination and growth under osmotic and drought stresses. Antioxidants 14, 1067 (2025).
-
Timofeeva, T. A., Bubnova, A. N., Shagdarova, B. T., Varlamov, V. P. & Kamionskaya, A. M. Phenylalanine ammonia-lyase-mediated differential response of tomato (Solanum lycopersicum L.) cultivars with different stress tolerance to treatment with low-molecular-weight chitosan. Agronomy 14, 386 (2024).
-
Lee, S. K. et al. Wild mungbean resistance to the nematode Meloidogyne enterolobii involves the induction of phenylpropanoid metabolism and lignification. Physiol. Plant. 176, e14533 (2024).
-
Liu, X. et al. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J. Exp. Bot. 64, 2243–2253 (2013).
-
Palma-Guerrero, J. et al. Take-all disease: new insights into an important wheat root pathogen. Trends Plant Sci. 26, 836–848 (2021).
-
Rengel, Z., Graham, R. D. & Pedler, J. F. Time-course of biosynthesis of phenolics and lignin in roots of wheat genotypes differing in manganese efficiency and resistance to take-all fungus. Ann. Bot. 74, 471–477 (1994).
-
Quiroz-Figueroa, F. R. et al. Cell wall-related genes and lignin accumulation contribute to the root resistance in different maize (Zea mays L.) genotypes to Fusarium verticillioides (Sacc.) nirenberg infection. Front. Plant Sci. 14, 1195794 (2023).
-
Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A Review. Agronomy Sustain. Devel. 28, 33–46 (2008).
-
Gholizadeh Vazvani, M., Dashti, H., Saberi Riseh, R. & Bihamta, M. R. Screening bread wheat germplasm for resistance to take-all disease (Gaeumannomyces graminis var. tritici) in greenhouse conditions. (2017).
-
Saberi Riseh, R., Dashti, H., Gholizadeh Vazvani, M. & Dini, A. Changes in the activity of enzymes phenylalanine ammonia-lyase, polyphenol oxidase, and peroxidase in some wheat genotypes against take-all disease. Journal of Agricultural Science and Technology 23, 929–942 (2021).
-
Freeman, J., Ward, E., Gutteridge, R. & Bateman, G. L. Methods for studying population structure, including sensitivity to the fungicide silthiofam, of the cereal take-all fungus Gaeumannomyces Graminis var. tritici. Plant Pathol. 54, 686–698 (2005).
-
Doyle, J. in Molecular techniques in taxonomy 283–293 (Springer, 1991).
-
Gholizadah Vazvani, M., Dashti, H., Saberi Riseh, R. & Loit, E. Association analysis of response to take-all disease with agronomic traits and molecular markers and selection ideal genotypes in bread wheat (Triticum aestivum L.) genotypes. Molecul. Breed. https://doi.org/10.1007/s11032-025-01554-4 (2025).
-
Ownley, B. H., Duffy, B. K. & Weller, D. M. Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Appl. Environ. Microbiol. 69, 3333–3343 (2003).
-
Gholizadah Vazvani, M., Dashti, H., Saberi Riseh, R. & Bihamta, M. Screening Bread Wheat germplasm for resistance to take-all disease (Gaeumannomyces graminis var. tritici) in greenhouse conditions. J. Agricult. Sci. Techn. 19, 1173–1184 (2017).
-
Foster, C. E., Martin, T. M. & Pauly, M. Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. JoVE J. Visualiz. Exper. e1745 (2010).
-
Fukushima, R. S. & Hatfield, R. D. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J. Agric. Food Chem. 49, 3133–3139 (2001).
-
Moreira-Vilar, F. C. et al. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLoS ONE 9, e110000 (2014).
-
Su, G., An, Z., Zhang, W. & Liu, Y. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls. J. Plant Physiol. 162, 1297–1303 (2005).
-
Muhammad, A. et al. Survey of wheat straw stem characteristics for enhanced resistance to lodging. Cellulose 27, 2469–2484 (2020).
-
Reddy, M., Tucker, M. R. & Dunn, S. Effect of manganese on concentrations of Zn, Fe, Cu and B in different soybean genotypes. Plant Soil 97, 57–62 (1987).
-
Chapman, B., Jones, D. & Jung, R. F. Processes controlling metal ion attenuation in acid mine drainage streams. Geochim. Cosmochim. Acta 47, 1957–1973 (1983).
-
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
-
D’Cunha, G. B., Satyanarayan, V. & Nair, P. M. Stabilization of phenylalanine ammonia lyase containing Rhodotorula glutinis cells for the continuous synthesis of L-phenylalanine methyl ester/96. Enzyme Microb. Technol. 19, 421–427 (1996).
-
Plewa, M. J., Smith, S. R. & Wagner, E. D. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental Mole. Mech. Mutagen. 247, 57–64 (1991).
-
Bhuiyan, N. H., Selvaraj, G., Wei, Y. & King, J. Role of lignification in plant defense. Plant Signal. Behav. 4, 158–159 (2009).
-
Vance, C., Kirk, T. & Sherwood, R. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18, 259–288 (1980).
-
Zhang, S. H., Yang, Q. & Ma, R. C. Erwinia carotovora ssp. carotovora infection induced “defense lignin” accumulation and lignin biosynthetic gene expression in Chinese cabbage (Brassica rapa L. ssp. pekinensis). J. Integrat. Plant Biol. 49, 993–1002 (2007).
-
Moura, J. C. M. S., Bonine, C. A. V., de Oliveira Fernandes Viana, J., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integrat. Plant Biol. 52, 360–376 (2010).
-
Jannoey, P., Pongprasert, W., Lumyong, S., Roytrakul, S. & Nomura, M. Comparative proteomic analysis of two rice cultivars (‘Oryza sativa‘L.) contrasting in Brown Planthopper (BPH) stress resistance. Plant Omics 8 (2015).
-
Kärkönen, A. & Koutaniemi, S. Lignin biosynthesis studies in plant tissue cultures. J. Integr. Plant Biol. 52, 176–185 (2010).
-
Bonello, P. & Blodgett, J. T. Pinus nigra–Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol. Mol. Plant Pathol. 63, 249–261 (2003).
-
Menden, B., Kohlhoff, M. & Moerschbacher, B. M. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry 68, 513–520 (2007).
-
Agarwal, P. K., Shukla, P. S., Gupta, K. & Jha, B. Bioengineering for salinity tolerance in plants: State of the art. Mol. Biotechnol. 54, 102–123 (2013).
-
Sharma, N. K. et al. MicroRNA397 regulates tolerance to drought and fungal infection by regulating lignin deposition in chickpea root. Plant, Cell Environ. 46, 3501–3517 (2023).
-
Mafa, M. S., Rufetu, E., Alexander, O., Kemp, G. & Mohase, L. Cell-wall structural carbohydrates reinforcements are part of the defence mechanisms of wheat against Russian wheat aphid (Diuraphis noxia) infestation. Plant Physiol. Biochem. 179, 168–178 (2022).
-
Liu, R. et al. Integrative analysis of the multi-omics reveals the stripe rust fungus resistance mechanism of the TaPAL in wheat. Front. Plant Sci. 14, 1174450 (2023).
-
Yang, X. et al. Lignin synthesis pathway in response to Rhizoctonia solani Kühn infection in potato (Solanum tuberosum L.). Chem. Biol. Techn. Agricult. 11, 135 (2024).
-
Chen, Y. et al. Comparative analysis of Fusarium crown rot resistance in synthetic hexaploid wheats and their parental genotypes. BMC Genomics 24, 178 (2023).
-
Saberi Riseh, R., Dashti, H. & Gholizadeh Vazvani, M. Association between agronomic traits and molecular markers with take-all disease severity in bread wheat Triticum aestivum. J. Crop Protect. 11, 39–59 (2022).
-
Expert, D., Franza, T. & Dellagi, A. Iron in plant–pathogen interactions. Molecular aspects of iron metabolism in pathogenic and symbiotic plant-microbe associations, 7–39 (2012).
-
Huber, D. M. & Jones, J. B. The role of magnesium in plant disease. Plant Soil 368, 73–85 (2013).
-
McMillan, V. et al. Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen. Sci. Rep. 8, 9550 (2018).
-
Puga-Freitas, R. et al. Transcriptional profiling of wheat in response to take-all disease and mechanisms involved in earthworm’s biocontrol effect. Eur. J. Plant Pathol. 144, 155–165 (2016).
-
McCay-Buis, T., Huber, D., Graham, R. D., Phillips, J. & Miskin, K. Manganese seed content and take-all of cereals. J. Plant Nutr. 18, 1711–1721 (1995).
-
Perfileva, A. I. & Krutovsky, K. V. Manganese nanoparticles: Synthesis, mechanisms of influence on plant resistance to stress, and prospects for application in agricultural chemistry. J. Agric. Food Chem. 72, 7564–7585 (2024).
-
Lee, M. H. et al. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J. 38, e101948 (2019).
-
Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 153, 895–905 (2010).
-
Graham, R. D. & Webb, M. J. Micronutrients and disease resistance and tolerance in plants. Micronutrients Agricult. 4, 329–370 (1991).
-
Aznar, A., Chen, N. W., Thomine, S. & Dellagi, A. Immunity to plant pathogens and iron homeostasis. Plant Sci. 240, 90–97 (2015).
-
Liu, Q. et al. Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots. Plant Soil 387, 323–336 (2015).
-
Cakmak, I. et al. Chapter 7-function of nutrients: Micronutrients. Marschner’s mineral nutrition of higher plants (2022).
-
Herlihy, J. H., Long, T. A. & McDowell, J. M. Iron homeostasis and plant immune responses: Recent insights and translational implications. J. Biol. Chem. 295, 13444–13457 (2020).
-
Ober, E. S. et al. Wheat root systems as a breeding target for climate resilience. Theor. Appl. Genet. 134, 1645–1662 (2021).
-
Lequeux, H., Hermans, C., Lutts, S. & Verbruggen, N. Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem. 48, 673–682 (2010).
-
Tripathi, R. et al. Plant mineral nutrition and disease resistance: A significant linkage for sustainable crop protection. Front. Plant Sci. 13, 883970 (2022).
-
Sun, J., Xiao, S. & Xue, C. The tug-of-war on iron between plant and pathogen. Phytopathology Research 5, 61 (2023).
-
Gholizadeh Vazvani, M., Saberi Riseh, R. & Dashti, H. Lignification and nutrients in wheat: key factors for resistance to take-all disease. Journal of Plant Pathology, 1–14 (2025).
