Point-of-use colorimetric detection of Escherichia coli in food matrices with DNAzyme crosslinked hydrogels

point-of-use-colorimetric-detection-of-escherichia-coli-in-food-matrices-with-dnazyme-crosslinked-hydrogels
Point-of-use colorimetric detection of Escherichia coli in food matrices with DNAzyme crosslinked hydrogels

References

  1. Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12, e1001923 (2015).

    Google Scholar 

  2. Van Kessel, J. S., Karns, J. S., Gorski, L., McCluskey, B. J. & Perdue, M. L. Prevalence of salmonellae, listeria monocytogenes, and fecal coliforms in bulk tank milk on US Dairies. J. Dairy Sci. 87, 2822–2830 (2004).

    Google Scholar 

  3. Luna-Guevara, J. J., Arenas-Hernandez, M. M. P., Martínez De La Peña, C., Silva, J. L. & Luna-Guevara, M. L. The role of pathogenic E. coli in fresh vegetables: behavior, contamination factors, and preventive measures. Int. J. Microbiol. 2019, 1–10 (2019).

    Google Scholar 

  4. Zarei, O., Shokoohizadeh, L., Hossainpour, H. & Alikhani, M. Y. The prevalence of Shiga Toxin-producing escherichia coli and enteropathogenic escherichia coli isolated from raw chicken meat samples. Int. J. Microbiol. 2021, 1–5 (2021).

    Google Scholar 

  5. Martínez-Chávez, L. et al. Quantitative distribution of Salmonella spp. and Escherichia coli on beef carcasses and raw beef at retail establishments. Int. J. Food Microbiol. 210, 149–155 (2015).

    Google Scholar 

  6. Law, J. W.-F., Ab Mutalib, N.-S., Chan, K.-G. & Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5, 770 (2015).

  7. Amiri, M., Bezaatpour, A., Jafari, H., Boukherroub, R. & Szunerits, S. Electrochemical methodologies for the detection of pathogens. ACS Sens 3, 1069–1086 (2018).

    Google Scholar 

  8. Nnachi, R. C. et al. Biosensors for rapid detection of bacterial pathogens in water, food and environment. Environ. Int. 166, 107357 (2022).

    Google Scholar 

  9. Vaisocherová-Lísalová, H. et al. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens. Bioelectron. 80, 84–90 (2016).

    Google Scholar 

  10. Wang, L., Jia, K., Qu, X., Li, Y. & Lin, J. Progress in separation and detection of foodborne bacteria for food safety. Curr. Opin. Food Sci. 62, 101266 (2025).

    Google Scholar 

  11. Lee, J. & You, Y. An integrated system combining filter-assisted sample preparation and colorimetric biosensing for rapid pathogen detection in complex food matrices. Foods 14, 2986 (2025).

    Google Scholar 

  12. Jangid, H. et al. Nanoparticle-based detection of foodborne pathogens: addressing matrix challenges, advances, and future perspectives in food safety. Food Chem. X 29, 102696 (2025).

    Google Scholar 

  13. Zhou, Y. et al. DNAzyme biosensor as an emerging food safety indicator: history and fundamental mechanism to future prospects. TrAC Trends Anal. Chem. 194, 118516 (2026).

    Google Scholar 

  14. Xiao, F., Li, W. & Xu, H. Advances in magnetic nanoparticles for the separation of foodborne pathogens: recognition, separation strategy, and application. Compr. Rev. Food Sci. Food Saf. 21, 4478–4504 (2022).

    Google Scholar 

  15. Younes, N. et al. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit. Rev. Food Sci. Nutr. 64, 9910–9932 (2024).

    Google Scholar 

  16. Trinh, T. N. D. & Nam, N. N. Isothermal amplification-based microfluidic devices for detecting foodborne pathogens: a review. Anal. Methods 16, 1150–1157 (2024).

    Google Scholar 

  17. Mazur, F., Han, Z., Tjandra, A. D. & Chandrawati, R. Digitalization of colorimetric sensor technologies for food safety. Adv. Mater. 36, 2404274 (2024).

    Google Scholar 

  18. Holliday, E. G. & Zhang, B. Machine learning-enabled colorimetric sensors for foodborne pathogen detection. in Advances in Food and Nutrition Research vol. 111 179–213 (Elsevier, 2024).

  19. Park, S.-H. & You, Y. Gold nanoparticle-based colorimetric biosensing for foodborne pathogen detection. Foods 13, 95 (2023).

    Google Scholar 

  20. Mann, H. et al. Bacteriophage-activated DNAzyme hydrogels combined with machine learning enable point-of-use colorimetric detection of Escherichia coli. Adv. Mater. 37, 2411173 (2025).

    Google Scholar 

  21. Nutiu, R. & Li, Y. Structure-switching signaling aptamers. J. Am. Chem. Soc. 125, 4771–4778 (2003).

    Google Scholar 

  22. Yousefi, H., Ali, M. M., Su, H.-M., Filipe, C. D. M. & Didar, T. F. Sentinel wraps: real-time monitoring of food contamination by printing DNAzyme Probes on Food Packaging. ACS Nano 12, 3287–3294 (2018).

    Google Scholar 

  23. Ali, M. M., Aguirre, S. D., Lazim, H. & Li, Y. Fluorogenic DNAzyme Probes as Bacterial Indicators. Angew. Chem. Int. Ed. 50, 3751–3754 (2011).

    Google Scholar 

  24. Zhang, W., Feng, Q., Chang, D., Tram, K. & Li, Y. In vitro selection of RNA-cleaving DNAzymes for bacterial detection. Methods 106, 66–75 (2016).

    Google Scholar 

  25. Prasad, A. et al. Bacteriophage-loaded microneedle patches for targeted and minimally disruptive foodborne pathogen decontamination. Sci. Adv. 11, eadx6918 (2025).

    Google Scholar 

  26. Studier, F. W. The genetics and physiology of bacteriophage T7. Virology 39, 562–574 (1969).

    Google Scholar 

  27. Coulombe, G., Catford, A., Martinez-Perez, A. & Buenaventura, E. Outbreaks of Escherichia coli O157:H7 infections linked to romaine lettuce in Canada from 2008 to 2018: an analysis of food safety context. J. Food Prot. 83, 1444–1462 (2020).

    Google Scholar 

  28. Chen, C. et al. Studies on simultaneous enrichment and detection of Escherichia coli O157:H7 during sample shipment. Foods 11, 3653 (2022).

    Google Scholar 

  29. Solomon, E. B., Pang, H.-J. & Matthews, K. R. Persistence of Escherichia coli O157:H7 on lettuce plants following spray irrigation with contaminated water. J. Food Prot. 66, 2198–2202 (2003).

    Google Scholar 

  30. Machado-Moreira, B., Richards, K., Brennan, F., Abram, F. & Burgess, C. M. Microbial contamination of fresh produce: what, where, and how? Compr. Rev. Food Sci. Food Saf. 18, 1727–1750 (2019).

    Google Scholar 

  31. Mor-Mur, M. & Yuste, J. Emerging bacterial pathogens in meat and poultry: an overview. Food Bioprocess Technol. 3, 24–35 (2010).

    Google Scholar 

  32. U. S. FDA. Outbreak investigation of E. coli O121:H19: organic carrots (November 2024). (FDA, 2024).

  33. Kintz, E. et al. Outbreaks of Shiga Toxin–Producing Escherichia coli linked to sprouted seeds, salad, and leafy greens: a systematic review. J. Food Prot. 82, 1950–1958 (2019).

    Google Scholar 

  34. Prasad, A. et al. Advancing in situ food monitoring through a smart lab-in-a-package system demonstrated by the detection of Salmonella in whole chicken. Adv. Mater. 35, 2302641 (2023).

    Google Scholar 

  35. Park, J. Y. et al. Detection of E. coli O157:H7 in food using automated immunomagnetic separation combined with real-time PCR. Processes 8, 908 (2020).

    Google Scholar 

  36. Bhunia, A. K. One day to one hour: how quickly can foodborne pathogens be detected? Future Microbiol 9, 935–946 (2014).

    Google Scholar 

  37. Priyanka, B., Patil, R. K. & Dwarakanath, S. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 144, 327–338 (2016).

    Google Scholar 

  38. Khan, S. et al. Material breakthroughs in smart food monitoring: intelligent packaging and on-site testing technologies for spoilage and contamination detection. Adv. Mater. 36, 2300875 (2024).

    Google Scholar 

Download references