Porous tantalum cage loaded with CGF promotes interbody fusion in a rat XLIF model

porous-tantalum-cage-loaded-with-cgf-promotes-interbody-fusion-in-a-rat-xlif-model
Porous tantalum cage loaded with CGF promotes interbody fusion in a rat XLIF model

References

  1. Ravindra, V. M. et al. Degenerative lumbar spine disease: estimating global incidence and worldwide volume. Global Spine J. 8, 784–794 (2018).

    Google Scholar 

  2. Yavin, D. et al. Lumbar fusion for degenerative disease: a systematic review and meta-analysis. Neurosurgery 80, 701–715 (2017).

    Google Scholar 

  3. Veronesi, F. et al. Complications in spinal fusion surgery: a systematic review of clinically used cages. J. Clin. Med. 11, 6279 (2022).

    Google Scholar 

  4. Formica, M. et al. Fusion rate and influence of surgery-related factors in lumbar interbody arthrodesis for degenerative spine diseases: a meta-analysis and systematic review. Musculoskelet. Surg. 104, 1–15 (2020).

    Google Scholar 

  5. Myeroff, C. & Archdeacon, M. Autogenous bone graft: donor sites and techniques. J. Bone Joint Surg. Am. 93, 2227–2236 (2011).

    Google Scholar 

  6. Patel, M. S., McCormick, J. R., Ghasem, A., Huntley, S. R. & Gjolaj, J. P. Tantalum: the next biomaterial in spine surgery? J. Spine Surg. 6, 72–86 (2020).

    Google Scholar 

  7. Zhang, Y. et al. Evaluation of biological performance of 3D printed trabecular porous tantalum spine fusion cage in large animal models. J. Orthop. Translat. 50, 185–195 (2025).

    Google Scholar 

  8. Liu, Y., Bao, C., Wismeijer, D. & Wu, G. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater. Sci. Eng. C Mater. Biol. Appl. 49, 323–329 (2015).

    Google Scholar 

  9. Wauthle, R. et al. Additively manufactured porous tantalum implants. Acta Biomater. 14, 217–225 (2015).

    Google Scholar 

  10. Guo, Y. et al. In vitro and in vivo study of 3D-printed porous tantalum scaffolds for repairing bone defects. ACS Biomater. Sci. Eng. 5, 1123–1133 (2019).

    Google Scholar 

  11. Lewallen, E. A. et al. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng. B Rev. 21, 218–230 (2015).

    Google Scholar 

  12. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).

    Google Scholar 

  13. Ehrenfest, D. M. D. et al. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 29, 171–184 (2018).

    Google Scholar 

  14. Huang, L., Zou, R., He, J., Ouyang, K. & Piao, Z. Comparing osteogenic effects between concentrated growth factors and the acellular dermal matrix. Braz Oral Res. 32, e29 (2018).

    Google Scholar 

  15. Wang, F., Li, Q. & Wang, Z. A comparative study of the effect of Bio-Oss® in combination with concentrated growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting. J. Oral Pathol. Med. 46, 528–536 (2017).

    Google Scholar 

  16. Lei, L. et al. Quantification of growth factors in advanced platelet-rich fibrin and concentrated growth factors and their clinical efficacy as adjunctive to the GTR procedure in periodontal intrabony defects. J. Periodontol. 91, 462–472 (2020).

    Google Scholar 

  17. Wang, L. et al. A comparative study of the effects of concentrated growth factors in two different forms on osteogenesis in vitro. Mol. Med. Rep. 20, 1039–1048 (2019).

    Google Scholar 

  18. Palermo, A. et al. Use of CGF in oral and implant surgery: from laboratory evidence to clinical evaluation. Int. J. Mol. Sci. 23, 15164 (2022).

    Google Scholar 

  19. Rochira, A. et al. Concentrated growth factors (CGF) induce osteogenic differentiation in human bone marrow stem cells. Biology (Basel). 9, 370 (2020).

    Google Scholar 

  20. Qiao, J., An, N. & Ouyang, X. Quantification of growth factors in different platelet concentrates. Platelets 28, 774–778 (2017).

    Google Scholar 

  21. Li, H. et al. Clinical observation of concentrated growth factor (CGF) combined with Iliac cancellous bone and composite bone material graft on postoperative osteogenesis and inflammation in the repair of extensive mandibular defects. J. Stomatol. Oral Maxillofac. Surg. 124, 101472 (2023).

    Google Scholar 

  22. Herrera-Vizcaino, C. & Albilia, J. B. Temporomandibular joint biosupplementation using platelet concentrates: a narrative review. Front. Oral Maxillofac. Med. 3, 38–38 (2021).

    Google Scholar 

  23. Kabir, M. A. et al. Mechanical properties of human concentrated growth factor (CGF) membrane and the CGF graft with bone morphogenetic protein-2 (BMP-2) onto periosteum of the skull of nude mice. Int. J. Mol. Sci. 22, 11331 (2021).

    Google Scholar 

  24. Wu, H., Li, S., Wang, W., Li, J. & Zhang, W. Demineralized bone matrix combined with concentrated growth factors promotes intervertebral fusion in a novel rat extreme lateral interbody fusion model. J. Orthop. Surg. Res. 20, 529 (2025).

    Google Scholar 

  25. Lam, W. M. R. et al. Mesenchymal stem cell exosomes enhance posterolateral spinal fusion in a rat model. Cells 13, 761 (2024).

    Google Scholar 

  26. Kobayashi, E. et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin. Oral Investig. 20, 2353–2360 (2016).

    Google Scholar 

  27. Li, S. et al. Dual-functional 3D-printed porous bioactive scaffold enhanced bone repair by promoting osteogenesis and angiogenesis. Mater. Today Bio. 24, 100943 (2024).

    Google Scholar 

  28. Li, J. et al. Improved intervertebral fusion in LLIF rabbit model with a novel titanium cage. Spine J. 24, 1109–1120 (2024).

    Google Scholar 

  29. Cui, L. et al. A novel tissue-engineered bone graft composed of silicon-substituted calcium phosphate, autogenous fine particulate bone powder and BMSCs promotes posterolateral spinal fusion in rabbits. J. Orthop. Translat. 26, 151–161 (2021).

    Google Scholar 

  30. Glatt, V., Evans, C. H. & Tetsworth, K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front. Physiol. 7, 678 (2016).

    Google Scholar 

  31. Hickman, T. T., Rathan-Kumar, S. & Peck, S. H. Development, pathogenesis, and regeneration of the intervertebral disc: current and future insights spanning traditional to omics methods. Front. Cell. Dev. Biol. 10, 841831 (2022).

    Google Scholar 

  32. Chen, Z. et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater. Sci. Eng. C Mater. Biol. Appl. 106, 110289 (2020).

    Google Scholar 

  33. Lu, T. et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone-like elastic modulus. Biomaterials 51, 173–183 (2015).

    Google Scholar 

  34. Kumar, G. et al. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials 32, 9188–9196 (2011).

    Google Scholar 

  35. Zhang, Y. et al. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Biomater. Adv. 133, 112651 (2022).

    Google Scholar 

  36. De Arriba, C. C. et al. Osseoincorporation of porous tantalum trabecular-structured metal: a histologic and histomorphometric study in humans. Int. J. Periodontics Restor. Dent. 38, 879–885 (2018).

    Google Scholar 

  37. Yuan, K. et al. Evaluation of interbody fusion efficacy and biocompatibility of a polyetheretherketone/calcium silicate/porous tantalum cage in a goat model. J. Orthop. Translat. 36, 109–119 (2022).

    Google Scholar 

  38. Talaat, W. M., Ghoneim, M. M., Salah, O. & Adly, O. A. Autologous bone marrow concentrates and concentrated growth factors accelerate bone regeneration after enucleation of mandibular pathologic lesions. J. Craniofac. Surg. 29, 992–997 (2018).

    Google Scholar 

  39. Inchingolo, F. et al. Guided bone regeneration: CGF and PRF combined with various types of scaffolds-a systematic review. Int. J. Dent. 4990295 (2024). 

  40. Li, Z. et al. Bone regeneration facilitated by autologous bioscaffold material: liquid phase of concentrated growth factor with dental follicle stem cell loading. ACS Biomater. Sci. Eng. 10, 3173–3187 (2024).

    Google Scholar 

  41. Rodella, L. F. et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction. Microsc Res. Tech. 74, 772–777 (2011).

    Google Scholar 

  42. Xu, F. et al. The potential application of concentrated growth factor in pulp regeneration: an in vitro and in vivo study. Stem Cell. Res. Ther. 10, 134 (2019).

    Google Scholar 

  43. Chen, J. & Jiang, H. A comprehensive review of concentrated growth factors and their novel applications in facial reconstructive and regenerative medicine. Aesthetic Plast. Surg. 44, 1047–1057 (2020).

    Google Scholar 

  44. Gruber, H. E. et al. A new small animal model for the study of spine fusion in the sand rat: pilot studies. Lab. Anim. 43, 272–277 (2009).

    Google Scholar 

  45. Furuichi, T. et al. Nanoclay gels attenuate BMP2-associated inflammation and promote chondrogenesis to enhance BMP2-spinal fusion. Bioact Mater. 44, 474–487 (2025).

    Google Scholar 

  46. Findeisen, L. et al. Exploring an innovative augmentation strategy in spinal fusion: a novel selective prostaglandin EP4 receptor agonist as a potential osteopromotive factor to enhance lumbar posterolateral fusion. Biomaterials 320, 123278 (2025).

    Google Scholar 

  47. Gantenbein, B. et al. The bone morphogenetic protein 2 analogue L51P enhances spinal fusion in combination with BMP2 in an in vivo rat tail model. Acta Biomater. 177, 148–156 (2024).

    Google Scholar 

  48. Plantz, M. A. et al. Osteoinductivity and Biomechanical assessment of a 3D printed demineralized bone matrix-ceramic composite in a rat spine fusion model. Acta Biomater. 127, 146–158 (2021).

    Google Scholar 

  49. Kang, Y. et al. A novel rat model of interbody fusion based on anterior lumbar corpectomy and fusion (ALCF). BMC Musculoskelet. Disord. 22, 965 (2021).

    Google Scholar 

  50. Yeh, Y. C. et al. Characterization of a novel caudal vertebral interbody fusion in a rat tail model: an implication for future material and mechanical testing. Biomed. J. 40, 62–68 (2017).

    Google Scholar 

  51. Drespe, I. H., Polzhofer, G. K., Turner, A. S. & Grauer, J. N. Animal models for spinal fusion. Spine J. 5, 209S–216S (2005).

    Google Scholar 

  52. Durmuslar, M. C. et al. Histological evaluation of the effect of concentrated growth factor on bone healing. J. Craniofac. Surg. 27, 1494–1497 (2016).

    Google Scholar 

  53. Stanca, E. et al. Analysis of CGF biomolecules, structure and cell population: characterization of the stemness features of CGF cells and osteogenic potential. Int. J. Mol. Sci. 22, 8867 (2021).

    Google Scholar 

  54. Takeda, Y., Katsutoshi, K., Matsuzaka, K. & Inoue, T. The effect of concentrated growth factor on rat bone marrow cells in vitro and on calvarial bone healing in vivo. Int. J. Oral Maxillofac. Implants. 30, 1187–1196 (2015).

    Google Scholar 

Download references