Mayorga-Ramos, A., Zúñiga-Miranda, J., Carrera-Pacheco, S. E., Barba-Ostria, C. & Guamán, L. P. CRISPR-Cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance. ACS Infect. Dis. 9, 1283–1302 (2023).
Song, Z. et al. Pathogen-specific bactericidal method mediated by conjugative delivery of CRISPR-Cas13a targeting bacterial endogenous transcripts. Microbiol. Spectr. 10, e01300-22 (2022).
Neil, K. et al. High‐efficiency delivery of CRISPR‐Cas9 by engineered probiotics enables precise microbiome editing. Mol. Syst. Biol. 17, e10335 (2021).
Sheng, H. et al. Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistance. PLoS ONE 18, e0291520 (2023).
Hamilton, T. A. et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat. Commun. 10, 4544 (2019).
Reuter, A. et al. Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res. 49, 3584–3598 (2021).
Gencay, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 42, 265–274 (2024).
Citorik, R. J., Mimee, M. & Lu, T. K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).
Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).
Selle, K. et al. In vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. mBio 11, e00019-20 (2020).
Kim, P. et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(24)00424-9 (2024).
Kiga, K. et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat. Commun. 11, 2934 (2020).
Jiang, W. et al. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet. 9, e1003844 (2013).
Khalil, I. A. et al. Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 18, 1229–1240 (2018).
Scallan, E., Griffin, P. M., Angulo, F. J., Tauxe, R. V. & Hoekstra, R. M. Foodborne illness acquired in the United States—unspecified agents. Emerg. Infect. Dis. 17, 16–22 (2011).
Etcheverría, A. I. & Padola, N. L. Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence 4, 366–372 (2013).
Paton, J. C. & Paton, A. W. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 11, 450–479 (1998).
Naidoo, N. & Zishiri, O. T. Comparative genomics analysis and characterization of Shiga toxin-producing Escherichia coli O157:H7 strains reveal virulence genes, resistance genes, prophages and plasmids. BMC Genomics 24, 791 (2023).
Hall, G., Kurosawa, S. & Stearns-Kurosawa, D. Shiga toxin therapeutics: beyond neutralization. Toxins 9, 291 (2017).
Mühlen, S. & Dersch, P. Treatment strategies for infections with Shiga toxin-producing Escherichia coli. Front. Cell. Infect. Microbiol. 10, 169 (2020).
Freedman, S. B. et al. Hyperhydration to improve kidney outcomes in children with Shiga toxin-producing E. coli infection: a multinational embedded cluster crossover randomized trial (the HIKO STEC trial). Trials 24, 359 (2023).
Tarr, P. I. & Freedman, S. B. Why antibiotics should not be used to treat Shiga toxin-producing Escherichia coli infections. Curr. Opin. Gastroenterol. 38, 30–38 (2022).
Bielaszewska, M. et al. Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strain. Antimicrob. Agents Chemother. 56, 3277–3282 (2012).
Ruano-Gallego, D. & Fernández, L. Á. in Shiga Toxin-Producing E. coli (eds Schüller, S. & Bielaszewska, M.) 253–272 (Springer, 2021).
Cheng, L., Henderson, T., Patfield, S., Stanker, L. & He, X. Mouse in vivo neutralization of Escherichia coli Shiga toxin 2 with monoclonal antibodies. Toxins 5, 1845–1858 (2013).
Schmidt, N. et al. Decreased STEC shedding by cattle following passive and active vaccination based on recombinant Escherichia coli Shiga toxoids. Vet. Res. 49, 28 (2018).
Sreerohini, S., Balakrishna, K. & Parida, M. Oral immunization of mice with Lactococcus lactis expressing Shiga toxin truncate confers enhanced protection against Shiga toxins of Escherichia coli O157:H7 and Shigella dysenteriae. APMIS 127, 671–680 (2019).
Cai, K., Tu, W., Liu, Y., Li, T. & Wang, H. Novel fusion antigen displayed-bacterial ghosts vaccine candidate against infection of Escherichia coli O157:H7. Sci. Rep. 5, 17479 (2015).
Kim, B. et al. Phage-derived antibacterials: harnessing the simplicity, plasticity, and diversity of phages. Viruses 11, 268 (2019).
Rund, S. A., Rohde, H., Sonnenborn, U. & Oelschlaeger, T. A. Antagonistic effects of probiotic Escherichia coli Nissle 1917 on EHEC strains of serotype O104:H4 and O157:H7. Int. J. Med. Microbiol. 303, 1–8 (2013).
Safwat Mohamed, D., Farouk Ahmed, E., Mohamed Mahmoud, A., Abd El-Baky, R. M. & John, J. Isolation and evaluation of cocktail phages for the control of multidrug-resistant Escherichia coli serotype O104: H4 and E. coli O157: H7 isolates causing diarrhea. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnx275 (2018).
Jia, M., Geornaras, I., Belk, K. E. & Yang, H. Sequence-specific removal of Shiga toxin-producing Escherichia coli using the CRISPR-Cas9 system. Meat Muscle Biol. https://doi.org/10.22175/rmc2017.116 (2019).
Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).
Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).
Vo, P. L. H. et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489 (2021).
Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).
Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 167–170 (2019).
Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).
Li, C. et al. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Commun. Biol. 6, 56 (2023).
Zheng, K. et al. Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Commun. Biol. 1, 32 (2018).
Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).
Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, e2018181118 (2021).
Beers, K. et al. Comparison of the RAPID-B® flow cytometer and the BAX® system for the detection of non-O157 Shiga toxin-producing Escherichia coli (STEC) in beef products. Food Control 50, 72–75 (2015).
Beaulaurier, J. et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat. Biotechnol. 36, 61–69 (2018).
OPINION 26 Designation of neotype strains (cultures) of type species of the bacterial genera Salmonella, Shigella, Arizona, Escherichia, Citrobacter and Proteus of the Family Enterobacteriaceae. Int. J. Syst. Evol. Microbiol. 13, 35–36 (1963).
Shin, H. H., Seo, J. H., Kim, C. S., Hwang, B. H. & Cha, H. J. Hybrid microarray based on double biomolecular markers of DNA and carbohydrate for simultaneous genotypic and phenotypic detection of cholera toxin-producing Vibrio cholerae. Biosens. Bioelectron. 79, 398–405 (2016).
Wells, J. G. et al. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J. Clin. Microbiol. 18, 512–520 (1983).
Dou, L. et al. ‘Three-To-One’ multi-functional nanocomposite-based lateral flow immunoassay for label-free and dual-readout detection of pathogenic bacteria. Biosens. Bioelectron. 204, 114093 (2022).
Strockbine, N. A. et al. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect. Immun. 53, 135–140 (1986).
Kudva, I. T., Hatfield, P. G. & Hovde, C. J. Escherichia coli O157:H7 in microbial flora of sheep. J. Clin. Microbiol. 34, 431–433 (1996).
Marques, L. R. et al. Production of Shiga-like toxin by Escherichia coli. J. Infect. Dis. 154, 338–341 (1986).
Plunkett, G., Rose, D. J., Durfee, T. J. & Blattner, F. R. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181, 1767–1778 (1999).
Shaw, L. P., Rocha, E. P. C. & MacLean, R. C. Restriction-modification systems have shaped the evolution and distribution of plasmids across bacteria. Nucleic Acids Res. 51, 6806–6818 (2023).
Westra, E. R. et al. CRISPR-Cas systems preferentially target the leading regions of MOBF conjugative plasmids. RNA Biol. 10, 749–761 (2013).
Novick, R. P. Plasmid incompatibility. Microbiol. Rev. 51, 381–395 (1987).
Allard, N., Collette, A., Paquette, J., Rodrigue, S. & Côté, J.-P. Systematic investigation of recipient cell genetic requirements reveals important surface receptors for conjugative transfer of IncI2 plasmids. Commun. Biol. 6, 1172 (2023).
Neil, K., Allard, N., Grenier, F., Burrus, V. & Rodrigue, S. Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl2 conjugative plasmid TP114. Commun. Biol. 3, 523 (2020).
Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).
Thorpe, C. M., Ritchie, J. M. & Acheson, D. W. K. in Escherichia coli (ed. Donnenberg, M. S.) 119–154 (Elsevier, 2002).
Jeon, B., Saisom, T., Sasipreeyajan, J. & Luangtongkum, T. Live-attenuated oral vaccines to reduce Campylobacter colonization in poultry. Vaccines 10, 685 (2022).
Phillips, A. D. & Frankel, G. Intimin‐mediated tissue specificity in enteropathogenic Escherichia coli interaction with human intestinal organ cultures. J. Infect. Dis. 181, 1496–1500 (2000).
Lewis, S. B., Cook, V., Tighe, R. & Schüller, S. Enterohemorrhagic Escherichia coli colonization of human colonic epithelium in vitro and ex vivo. Infect. Immun. 83, 942–949 (2015).
Ruano-Gallego, D. et al. A nanobody targeting the translocated intimin receptor inhibits the attachment of enterohemorrhagic E. coli to human colonic mucosa. PLoS Pathog. 15, e1008031 (2019).
Han, S. et al. Novel signal peptides improve the secretion of recombinant Staphylococcus aureus alpha toxinH35L in Escherichia coli. AMB Express 7, 93 (2017).
Tamma, P. D. et al. Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial. Trials 23, 1057 (2022).
Nethery, M. A., Hidalgo-Cantabrana, C., Roberts, A. & Barrangou, R. CRISPR-based engineering of phages for in situ bacterial base editing. Proc. Natl Acad. Sci. USA 119, e2206744119 (2022).
Zhou, W., Chow, K., Fleming, E. & Oh, J. Selective colonization ability of human fecal microbes in different mouse gut environments. ISME J. 13, 805–823 (2019).
Paton, A. W. et al. Molecular microbiological investigation of an outbreak of hemolytic-uremic syndrome caused by dry fermented sausage contaminated with Shiga-like toxin-producing Escherichia coli. J. Clin. Microbiol. 34, 1622–1627 (1996).
Spinale, J. M., Ruebner, R. L., Copelovitch, L. & Kaplan, B. S. Long-term outcomes of Shiga toxin hemolytic uremic syndrome. Pediatr. Nephrol. 28, 2097–2105 (2013).
Lu, Z. et al. Nanobody-based bispecific neutralizer for Shiga toxin-producing E. coli. ACS Infect. Dis. 8, 321–329 (2022).
Klompe, S. E. et al. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons. Mol. Cell 82, 616–628.e5 (2022).
Harimoto, T. et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat. Biotechnol. 40, 1259–1269 (2022).
Razavi, S., Janfaza, S., Tasnim, N., Gibson, D. L. & Hoorfar, M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Nanoscale Adv. 3, 2699–2709 (2021).
Lam, K. N. et al. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 37, 109930 (2021).
Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857–864 (2018).
Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).
Kalantari, A. et al. Robust performance of a live bacterial therapeutic chassis lacking the colibactin gene cluster. PLoS ONE 18, e0280499 (2023).
Koch, L. CRISPR editing within microbial communities. Nat. Rev. Genet. 23, 72 (2022).
Pantoja Angles, A., Valle-Pérez, A. U., Hauser, C. & Mahfouz, M. M. Microbial biocontainment systems for clinical, agricultural, and industrial applications. Front. Bioeng. Biotechnol. 10, 830200 (2022).
Foo, J. L., Ling, H., Lee, Y. S. & Chang, M. W. Microbiome engineering: current applications and its future. Biotechnol. J. 12, 1600099 (2017).
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Simon, R., Priefer, U. & Pühler, A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat. Biotechnol. 1, 784–791 (1983).
Neil, K., Allard, N., Jordan, D. & Rodrigue, S. Assembly of large mobilizable genetic cargo by double recombinase operated insertion of DNA (DROID). Plasmid 104, 102419 (2019).
Datta, S., Costantino, N. & Court, D. L. A set of recombineering plasmids for Gram-negative bacteria. Gene 379, 109–115 (2006).