Precision rewriting of muscle genetics: therapeutic horizons of base and prime editing in skeletal muscle disorders

precision-rewriting-of-muscle-genetics:-therapeutic-horizons-of-base-and-prime-editing-in-skeletal-muscle-disorders
Precision rewriting of muscle genetics: therapeutic horizons of base and prime editing in skeletal muscle disorders

References

  1. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6. https://doi.org/10.1126/SCIENCE.1232033/SUPPL_FILE/MALI.SM.PDF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2. https://doi.org/10.1038/nbt.2507.

    Article  CAS  PubMed  Google Scholar 

  3. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4. https://doi.org/10.1038/nature17946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57. https://doi.org/10.1038/s41586-019-1711-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laing NG. Genetics of neuromuscular disorders. Crit Rev Clin Lab Sci. 2012;49:33–48. https://doi.org/10.3109/10408363.2012.658906;CTYPE:STRING:JOURNAL.

    Article  CAS  PubMed  Google Scholar 

  6. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308. https://doi.org/10.1038/nprot.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004;32:3683–8. https://doi.org/10.1093/NAR/GKH703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766. https://doi.org/10.7554/ELIFE.04766.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boutin J, Cappellen D, Rosier J, Amintas S, Dabernat S, Bedel A, et al. ON-target adverse events of CRISPR-Cas9 nuclease: more chaotic than expected. CRISPR J. 2022;5:19–30. https://doi.org/10.1089/CRISPR.2021.0120.

    Article  CAS  PubMed  Google Scholar 

  10. Amendola M, Brusson M, Miccio A. CRISPRthripsis: the risk of CRISPR/Cas9-induced chromothripsis in gene therapy. Stem Cells Transl Med. 2022;11:1003. https://doi.org/10.1093/STCLTM/SZAC064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kantor A, McClements ME, Maclaren RE. Crispr-cas9 dna base-editing and prime-editing. Int J Mol Sci. 2020;21:1–22. https://doi.org/10.3390/ijms21176240.

    Article  CAS  Google Scholar 

  12. Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020;19:839–59. https://doi.org/10.1038/s41573-020-0084-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pearl LH. Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res DNA Repair. 2000;460:165–81. https://doi.org/10.1016/S0921-8777(00)00025-2.

    Article  CAS  PubMed  Google Scholar 

  14. Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 2017;3. https://doi.org/10.1126/SCIADV.AAO4774/SUPPL_FILE/AAO4774_SM.PDF.

  15. Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36:843–6. https://doi.org/10.1038/nbt.4172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. 2017;35:371–6. https://doi.org/10.1038/nbt.3803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tan J, Zhang F, Karcher D, Bock R. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun. 2019;10:1–10. https://doi.org/10.1038/s41467-018-08034-8.

    Article  CAS  Google Scholar 

  18. Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, et al. Base editing with a Cpf1–cytidine deaminase fusion. Nat Biotechnol. 2018;36:324–7. https://doi.org/10.1038/nbt.4102.

    Article  CAS  PubMed  Google Scholar 

  19. Yonekura S-I, Nakamura N, Yonei S, Zhang-Akiyama Q-M. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. J Radiat Res. 2009;50:19–26. https://doi.org/10.1269/jrr.08080.

    Article  CAS  PubMed  Google Scholar 

  20. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71. https://doi.org/10.1038/nature24644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38:892–900. https://doi.org/10.1038/s41587-020-0491-6.

    Article  CAS  PubMed  Google Scholar 

  22. Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020;38:883–91. https://doi.org/10.1038/s41587-020-0453-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen L, Zhang S, Xue N, Hong M, Zhang X, Zhang D, et al. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol. 2022;19:101–10. https://doi.org/10.1038/s41589-022-01163-8.

    Article  CAS  PubMed  Google Scholar 

  24. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27. https://doi.org/10.1126/science.aaq0180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, et al. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365:382–6. https://doi.org/10.1126/science.aax7063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021;184:5635–.e29. https://doi.org/10.1016/J.CELL.2021.09.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferreira da Silva J, Oliveira GP, Arasa-Verge EA, Kagiou C, Moretton A, Timelthaler G, et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat Commun. 2022;13:1–11. https://doi.org/10.1038/s41467-022-28442-1.

    Article  CAS  Google Scholar 

  28. Doman JL, Pandey S, Neugebauer ME, An M, Davis JR, Randolph PB, et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell. 2023;186:3983–4002.e26. https://doi.org/10.1016/J.CELL.2023.07.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan J, Oyler-Castrillo P, Ravisankar P, Ward CC, Levesque S, Jing Y, et al. Improving prime editing with an endogenous small RNA-binding protein. Nature. 2024;628:639–47. https://doi.org/10.1038/s41586-024-07259-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2021;40:218–26. https://doi.org/10.1038/s41587-021-01025-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2021;40:731–40. https://doi.org/10.1038/s41587-021-01133-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J, He Z, Wang G, Zhang R, Duan J, Gao P, et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat Methods. 2022;19:331–40. https://doi.org/10.1038/s41592-022-01399-1.

    Article  CAS  PubMed  Google Scholar 

  33. Emery AEH. Population frequencies of inherited neuromuscular diseases—A world survey. Neuromuscul Disord. 1991;1:19–29. https://doi.org/10.1016/0960-8966(91)90039-U.

    Article  CAS  PubMed  Google Scholar 

  34. Ryder S, Leadley RM, Armstrong N, Westwood M, De Kock S, Butt T, et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis. 2017;12:1–21. https://doi.org/10.1186/S13023-017-0631-3/TABLES/10.

    Article  Google Scholar 

  35. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2:90–5. https://doi.org/10.1016/0888-7543(88)90113-9.

    Article  CAS  PubMed  Google Scholar 

  36. Erkut E, Yokota T. CRISPR therapeutics for duchenne muscular dystrophy. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23031832.

  37. Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD global database: analysis of more than 7000 duchenne muscular dystrophy mutations. Hum Mutat. 2015;36:395. https://doi.org/10.1002/HUMU.22758.

    Article  CAS  PubMed  Google Scholar 

  38. Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. 2018;36:536–9. https://doi.org/10.1038/nbt.4148.

    Article  CAS  PubMed  Google Scholar 

  39. Xu L, Zhang C, Li H, Wang P, Gao Y, Mokadam NA, et al. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun. 2021;12. https://doi.org/10.1038/s41467-021-23996-y.

  40. Jin M, Lin J, Li H, Li Z, Yang D, Wang Y, et al. Correction of human nonsense mutation via adenine base editing for Duchenne muscular dystrophy treatment in mouse. Mol Ther Nucleic Acids. 2024;35. https://doi.org/10.1016/j.omtn.2024.102165.

  41. Li G, Jin M, Li Z, Xiao Q, Lin J, Yang D, et al. Mini-dCas13X–mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J. Clin. Investig. 2023;133. https://doi.org/10.1172/JCI162809.

  42. Wang X, Zhang R, Yang D, Li G, Fan Z, Du H, et al. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv. Sci. 2023;10. https://doi.org/10.1002/advs.202206813.

  43. Yuan J, Ma Y, Huang T, Chen Y, Peng Y, Li B, et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol Cell. 2018;72:380–.e7. https://doi.org/10.1016/J.MOLCEL.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  44. Qiu H, Li G, Yuan J, Yang D, Ma Y, Wang F, et al. Efficient exon skipping by base-editor-mediated abrogation of exonic splicing enhancers. Cell Rep 2023;42. https://doi.org/10.1016/j.celrep.2023.113340.

  45. Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Atmanli A, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv 2021;7. https://doi.org/10.1126/sciadv.abg4910.

  46. Chai AC, Chemello F, Li H, Nishiyama T, Chen K, Zhang Y, et al. Single-swap editing for the correction of common Duchenne muscular dystrophy mutations. Mol Ther Nucleic Acids. 2023;32:522–35. https://doi.org/10.1016/j.omtn.2023.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gapinske M, Winter J, Swami D, Gapinske L, Woods WS, Shirguppe S, et al. Targeting Duchenne muscular dystrophy by skipping DMD exon 45 with base editors. Mol Ther Nucleic Acids. 2023;33:572–86. https://doi.org/10.1016/j.omtn.2023.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li J, Wang K, Zhang Y, Qi T, Yuan J, Zhang L, et al. Therapeutic exon skipping through a CRISPR-guided cytidine deaminase rescues dystrophic cardiomyopathy in vivo. Circulation. 2021;144:1760–76. https://doi.org/10.1161/CIRCULATIONAHA.121.054628/SUPPL_FILE/CIRC_CIRCULATIONAHA-2021-054628_SUPP1.PDF.

    Article  CAS  PubMed  Google Scholar 

  49. Lin J, Jin M, Yang D, Li Z, Zhang Y, Xiao Q, et al. Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model. Nat Commun 2024;15. https://doi.org/10.1038/s41467-024-50340-x.

  50. Li G, Dong X, Luo J, Yuan T, Li T, Zhao G, et al. Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation. Nat Commun. 2024;15:1–10. https://doi.org/10.1038/s41467-024-52485-1.

    Article  CAS  Google Scholar 

  51. Jin H, Fu H, Wang J, Wang Z, Liu J, Han F, et al. Generation of a DMD loss-of-function mutant human embryonic stem cell lines by CRISPR base editing. Stem Cell Res. 2024;76:103343. https://doi.org/10.1016/J.SCR.2024.103343.

    Article  CAS  PubMed  Google Scholar 

  52. Escobar H, Krause A, Keiper S, Kieshauer J, Müthel S, de Paredes MG, et al. Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight. 2021;6. https://doi.org/10.1172/jci.insight.145994.

  53. Šikrová D, Cadar VA, Ariyurek Y, Laros JFJ, Balog J, van der Maarel SM. Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. Mol Ther Nucleic Acids. 2021;25:342–54. https://doi.org/10.1016/j.omtn.2021.05.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang H, Krause A, Escobar H, Müthel S, Metzler E, Spuler S. LMNA co-regulated gene expression as a suitable readout after precise gene correction. Int J Mol Sci 2022;23. https://doi.org/10.3390/ijms232415525.

  55. Ramirez-Martinez A, Zhang Y, van den Boogaard MJ, McAnally JR, Rodriguez-Caycedo C, Chai AC, et al. Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J Clin Invest. 2022;132. https://doi.org/10.1172/JCI159002.

  56. Park JC, Kim J, Jang HK, Lee SY, Kim KT, Kwon EJ, et al. Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials. 2022;282:121419. https://doi.org/10.1016/J.BIOMATERIALS.2022.121419.

    Article  CAS  PubMed  Google Scholar 

  57. Hovhannisyan Y, Li Z, Callon D, Suspène R, Batoumeni V, Canette A, et al. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther. 2024;15:1–23. https://doi.org/10.1186/S13287-023-03619-7.

    Article  Google Scholar 

  58. Cha JH, Lee SH, Yun Y, Choi WH, Koo H, Jung SH, et al. Discovery of novel disease-causing mutation in SSBP1 and its correction using adenine base editor to improve mitochondrial function. Mol Ther Nucleic Acids. 2024;35. https://doi.org/10.1016/J.OMTN.2024.102257.

  59. Christensen CL, Kan SH, Andrade-Heckman P, Rha AK, Harb JF, Wang RY Base editing rescues acid α-glucosidase function in infantile-onset Pompe disease patient-derived cells. Mol Ther Nucleic Acids. 2024;35. https://doi.org/10.1016/J.OMTN.2024.102220.

  60. Mbakam CH, Rousseau J, Tremblay G, Yameogo P, Tremblay JP. Prime editing permits the introduction of specific mutations in the gene responsible for duchenne muscular dystrophy. Int J Mol Sci. 2022;23:6160. https://doi.org/10.3390/ijms23116160.

    Article  CAS  Google Scholar 

  61. Happi Mbakam C, Rousseau J, Lu Y, Bigot A, Mamchaoui K, Mouly V, et al. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Mol Ther Nucleic Acids. 2022;30:272–85. https://doi.org/10.1016/j.omtn.2022.09.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang Q, Capelletti S, Liu J, Janssen JM, Gonçalves MAFV. Selection-free precise gene repair using high-capacity adenovector delivery of advanced prime editing systems rescues dystrophin synthesis in DMD muscle cells. Nucleic Acids Res. 2024;52:2740–57. https://doi.org/10.1093/nar/gkae057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Happi Mbakam C, Roustant J, Rousseau J, Yameogo P, Lu Y, Bigot A, et al. Prime editing strategies to mediate exon skipping in DMD gene. Front Med. 2023;10. https://doi.org/10.3389/fmed.2023.1128557.

  64. Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F, Bönnemann C, Dirksen R, et al. 217th ENMC International Workshop: RYR1-related myopathies, Naarden, The Netherlands, 29–31 January 2016. Neuromuscul Disord. 2016;26:624–33. https://doi.org/10.1016/J.NMD.2016.06.001.

    Article  PubMed  Google Scholar 

  65. Godbout K, Rousseau J, Tremblay JP. Successful correction by prime editing of a mutation in the RYR1 gene responsible for a myopathy. Cells. 2024;13. https://doi.org/10.3390/cells13010031.

  66. Godbout K, Dugas M, Reiken SR, Ramezani S, Falle A, Rousseau J, et al. Universal prime editing therapeutic strategy for RyR1-related myopathies: a protective mutation rescues leaky RyR1 channel. Int J Mol Sci. 2025;26:2835. https://doi.org/10.3390/IJMS26072835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1:427–51. https://doi.org/10.1146/ANNUREV-VIROLOGY-031413-085355/CITE/REFWORKS.

    Article  PubMed  Google Scholar 

  68. Muraine L, Bensalah M, Dhiab J, Cordova G, Arandel L, Marhic A, et al. Transduction efficiency of adeno-associated virus serotypes after local injection in mouse and human skeletal muscle. Hum Gene Ther. 2020;31:233. https://doi.org/10.1089/HUM.2019.173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng. 2020;4:97–110. https://doi.org/10.1038/s41551-019-0501-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhi S, Chen Y, Wu G, Wen J, Wu J, Liu Q, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Therapy. 2022;30:283–94. https://doi.org/10.1016/J.YMTHE.2021.07.011.

  71. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29:285–98. https://doi.org/10.1089/HUM.2018.015/ASSET/IMAGES/LARGE/FIGURE8.JPEG.

  72. Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics—Critical considerations for clinical translation. Front Bioeng Biotechnol. 2023;11:1138596. https://doi.org/10.3389/FBIOE.2023.1138596.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Davis JR, Wang X, Witte IP, Huang TP, Levy JM, Raguram A, et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat Biomed Eng. 2022;6:1272–83. https://doi.org/10.1038/s41551-022-00911-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Weinmann J, Weis S, Sippel J, Tulalamba W, Remes A, El Andari J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun. 2020;11:1–12. https://doi.org/10.1038/s41467-020-19230-w.

    Article  CAS  Google Scholar 

  75. Tabebordbar M, Lagerborg KA, Stanton A, King EM, Ye S, Tellez L, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021;184:4919–38.e22. https://doi.org/10.1016/J.CELL.2021.08.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. El Andari J, Renaud-Gabardos E, Tulalamba W, Weinmann J, Mangin L, Hong Pham Q, et al. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Sci Adv. 2022;8:4704. https://doi.org/10.1126/SCIADV.ABN4704/SUPPL_FILE/SCIADV.ABN4704_SM.PDF.

    Article  Google Scholar 

  77. Vu Hong A, Suel L, Petat E, Dubois A, Le Brun PR, Guerchet N, et al. An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species. Nat Commun. 2024;15:7965. https://doi.org/10.1038/S41467-024-52002-4.

    Article  Google Scholar 

  78. Izzo M, Battistini J, Golini E, Voellenkle C, Provenzano C, Orsini T, et al. Muscle-specific gene editing improves molecular and phenotypic defects in a mouse model of myotonic dystrophy type 1. Clin Transl Med. 2025;15:e70227. https://doi.org/10.1002/CTM2.70227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guo Z, Zhu AT, Fang RH, Zhang L. Viral and nonviral nanocarriers for in vivo CRISPR-based gene editing. Nano Res. 2024;17:8904–25. https://doi.org/10.1007/S12274-024-6748-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ortinski PI, O’Donovan B, Dong X, Kantor B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol Ther Methods Clin Dev. 2017;5:153–64. https://doi.org/10.1016/J.OMTM.2017.04.002/ATTACHMENT/31A80968-8316-4BC3-8EAF-A90E3DD6810A/MMC2.PDF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hindi SM, Petrany MJ, Greenfeld E, Focke LC, Cramer AAW, Whitt MA, et al. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. Cell. 2023;186:2062–77.e17. https://doi.org/10.1016/J.CELL.2023.03.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Beaufils M, Tourel A, Petiot A, Halmai NB, Segal DJ, Rendu J, et al. Development of knock-out muscle cell lines using lentivirus-mediated CRISPR/Cas9 gene editing. J Vis Exp. 2022;2022:e64114. https://doi.org/10.3791/64114.

    Article  CAS  Google Scholar 

  83. Wang DN, Wang ZQ, Jin M, Lin MT, Wang N. CRISPR/Cas9-based genome editing for the modification of multiple duplications that cause Duchenne muscular dystrophy. Gene Ther. 2022;29:730–7. https://doi.org/10.1038/S41434-022-00336-3.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou H, Wang X, Steer CJ, Song G, Niu J. Efficient silencing of hepatitis B virus S gene through CRISPR-mediated base editing. Hepatol Commun. 2022;6:1652–63. https://doi.org/10.1002/HEP4.1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Abutaleb NO, Gao XD, Bedapudi A, Choi L, Shores KL, Kennedy C, et al. Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome. APL Bioeng 2025;9. https://doi.org/10.1063/5.0244026/3337408.

  86. Mu H, Liu Y, Chi Y, Wang F, Meng S, Zhang Y, et al. Systematic optimization of prime editing for enhanced efficiency and versatility in genome engineering across diverse cell types. Front Cell Dev Biol. 2025;13:1589034. https://doi.org/10.3389/FCELL.2025.1589034/BIBTEX.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents. Cell. 2022;185:2806–27. https://doi.org/10.1016/J.CELL.2022.03.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haldrup J, Andersen S, LaVilla Labial AR, Wolff JH, Frandsen FP, Skov TW, et al. Engineered lentivirus-derived nanoparticles (LVNPs) for delivery of CRISPR/Cas ribonucleoprotein complexes supporting base editing, prime editing and in vivo gene modification. Nucleic Acids Res. 2023;51:10059–74. https://doi.org/10.1093/NAR/GKAD676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Banskota S, Raguram A, Suh S, Du SW, Davis JR, Choi EH, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 2022;185:250–.e16. https://doi.org/10.1016/J.CELL.2021.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol. 2024;42:1526–37. https://doi.org/10.1038/S41587-023-02078-Y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Halegua T, Risson V, Carras J, Rouyer M, Coudert L, Jacquier A, et al. Delivery of Prime editing in human stem cells using pseudoviral NanoScribes particles. Nat Commun. 2025;16:1–12. https://doi.org/10.1038/s41467-024-55604-0.

    Article  CAS  Google Scholar 

  92. Kenjo E, Hozumi H, Makita Y, Iwabuchi KA, Fujimoto N, Matsumoto S, et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun. 2021;12. https://doi.org/10.1038/S41467-021-26714-W.

  93. Emami MR, Young CS, Ji Y, Liu X, Mokhonova E, Pyle AD, et al. Polyrotaxane nanocarriers can deliver CRISPR/Cas9 plasmid to dystrophic muscle cells to successfully edit the DMD Gene. Adv Ther. 2019;2. https://doi.org/10.1002/ADTP.201900061.

  94. Gee P, Lung MSY, Okuzaki Y, Sasakawa N, Iguchi T, Makita Y, et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat Commun 2020;11. https://doi.org/10.1038/S41467-020-14957-Y.

  95. Bagley JR, Denes LT, Mccarthy JJ, Wang ET, Murach KA, Bagley JR, et al. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol. 2023;601:723–41. https://doi.org/10.1113/JP283658.

    Article  CAS  PubMed  Google Scholar 

  96. Morin A, Stantzou A, Petrova ON, Hildyard J, Tensorer T, Matouk M, et al. Dystrophin myonuclear domain restoration governs treatment efficacy in dystrophic muscle. Proc Natl Acad Sci USA 2023;120. https://doi.org/10.1073/PNAS.2206324120.

  97. Hanson B, Stenler S, Ahlskog N, Chwalenia K, Svrzikapa N, Coenen-Stass AML, et al. Non-uniform dystrophin re-expression after CRISPR-mediated exon excision in the dystrophin/utrophin double-knockout mouse model of DMD. Mol Ther Nucleic Acids. 2022;30:379–97. https://doi.org/10.1016/j.omtn.2022.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Poukalov KK, Valero MC, Muscato DR, Adams LM, Chun H, Lee YIL, et al. Myospreader improves gene editing in skeletal muscle by myonuclear propagation. Proc Natl Acad Sci USA. 2024;121:e2321438121. https://doi.org/10.1073/PNAS.2321438121/SUPPL_FILE/PNAS.2321438121.SAPP.PDF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wallace GQ, Mcnally EM. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. 2024. https://doi.org/10.1146/annurev.physiol.010908.163216.

  100. Kwon JB, Ettyreddy AR, Vankara A, Bohning JD, Devlin G, Hauschka SD, et al. In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of duchenne muscular dystrophy. Mol Ther Methods Clin Dev. 2020;19:320–9. https://doi.org/10.1016/j.omtm.2020.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references