References
-
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6. https://doi.org/10.1126/SCIENCE.1232033/SUPPL_FILE/MALI.SM.PDF.
-
Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2. https://doi.org/10.1038/nbt.2507.
-
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4. https://doi.org/10.1038/nature17946.
-
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57. https://doi.org/10.1038/s41586-019-1711-4.
-
Laing NG. Genetics of neuromuscular disorders. Crit Rev Clin Lab Sci. 2012;49:33–48. https://doi.org/10.3109/10408363.2012.658906;CTYPE:STRING:JOURNAL.
-
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308. https://doi.org/10.1038/nprot.2013.143.
-
Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004;32:3683–8. https://doi.org/10.1093/NAR/GKH703.
-
Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 2014;3:e04766. https://doi.org/10.7554/ELIFE.04766.
-
Boutin J, Cappellen D, Rosier J, Amintas S, Dabernat S, Bedel A, et al. ON-target adverse events of CRISPR-Cas9 nuclease: more chaotic than expected. CRISPR J. 2022;5:19–30. https://doi.org/10.1089/CRISPR.2021.0120.
-
Amendola M, Brusson M, Miccio A. CRISPRthripsis: the risk of CRISPR/Cas9-induced chromothripsis in gene therapy. Stem Cells Transl Med. 2022;11:1003. https://doi.org/10.1093/STCLTM/SZAC064.
-
Kantor A, McClements ME, Maclaren RE. Crispr-cas9 dna base-editing and prime-editing. Int J Mol Sci. 2020;21:1–22. https://doi.org/10.3390/ijms21176240.
-
Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov. 2020;19:839–59. https://doi.org/10.1038/s41573-020-0084-6.
-
Pearl LH. Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res DNA Repair. 2000;460:165–81. https://doi.org/10.1016/S0921-8777(00)00025-2.
-
Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv 2017;3. https://doi.org/10.1126/SCIADV.AAO4774/SUPPL_FILE/AAO4774_SM.PDF.
-
Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36:843–6. https://doi.org/10.1038/nbt.4172.
-
Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. 2017;35:371–6. https://doi.org/10.1038/nbt.3803.
-
Tan J, Zhang F, Karcher D, Bock R. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun. 2019;10:1–10. https://doi.org/10.1038/s41467-018-08034-8.
-
Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, et al. Base editing with a Cpf1–cytidine deaminase fusion. Nat Biotechnol. 2018;36:324–7. https://doi.org/10.1038/nbt.4102.
-
Yonekura S-I, Nakamura N, Yonei S, Zhang-Akiyama Q-M. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. J Radiat Res. 2009;50:19–26. https://doi.org/10.1269/jrr.08080.
-
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71. https://doi.org/10.1038/nature24644.
-
Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38:892–900. https://doi.org/10.1038/s41587-020-0491-6.
-
Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020;38:883–91. https://doi.org/10.1038/s41587-020-0453-z.
-
Chen L, Zhang S, Xue N, Hong M, Zhang X, Zhang D, et al. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol. 2022;19:101–10. https://doi.org/10.1038/s41589-022-01163-8.
-
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27. https://doi.org/10.1126/science.aaq0180.
-
Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, et al. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365:382–6. https://doi.org/10.1126/science.aax7063.
-
Chen PJ, Hussmann JA, Yan J, Knipping F, Ravisankar P, Chen PF, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell. 2021;184:5635–.e29. https://doi.org/10.1016/J.CELL.2021.09.018.
-
Ferreira da Silva J, Oliveira GP, Arasa-Verge EA, Kagiou C, Moretton A, Timelthaler G, et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat Commun. 2022;13:1–11. https://doi.org/10.1038/s41467-022-28442-1.
-
Doman JL, Pandey S, Neugebauer ME, An M, Davis JR, Randolph PB, et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell. 2023;186:3983–4002.e26. https://doi.org/10.1016/J.CELL.2023.07.039.
-
Yan J, Oyler-Castrillo P, Ravisankar P, Ward CC, Levesque S, Jing Y, et al. Improving prime editing with an endogenous small RNA-binding protein. Nature. 2024;628:639–47. https://doi.org/10.1038/s41586-024-07259-6.
-
Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2021;40:218–26. https://doi.org/10.1038/s41587-021-01025-z.
-
Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2021;40:731–40. https://doi.org/10.1038/s41587-021-01133-w.
-
Wang J, He Z, Wang G, Zhang R, Duan J, Gao P, et al. Efficient targeted insertion of large DNA fragments without DNA donors. Nat Methods. 2022;19:331–40. https://doi.org/10.1038/s41592-022-01399-1.
-
Emery AEH. Population frequencies of inherited neuromuscular diseases—A world survey. Neuromuscul Disord. 1991;1:19–29. https://doi.org/10.1016/0960-8966(91)90039-U.
-
Ryder S, Leadley RM, Armstrong N, Westwood M, De Kock S, Butt T, et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis. 2017;12:1–21. https://doi.org/10.1186/S13023-017-0631-3/TABLES/10.
-
Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2:90–5. https://doi.org/10.1016/0888-7543(88)90113-9.
-
Erkut E, Yokota T. CRISPR therapeutics for duchenne muscular dystrophy. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23031832.
-
Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD global database: analysis of more than 7000 duchenne muscular dystrophy mutations. Hum Mutat. 2015;36:395. https://doi.org/10.1002/HUMU.22758.
-
Ryu SM, Koo T, Kim K, Lim K, Baek G, Kim ST, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. 2018;36:536–9. https://doi.org/10.1038/nbt.4148.
-
Xu L, Zhang C, Li H, Wang P, Gao Y, Mokadam NA, et al. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun. 2021;12. https://doi.org/10.1038/s41467-021-23996-y.
-
Jin M, Lin J, Li H, Li Z, Yang D, Wang Y, et al. Correction of human nonsense mutation via adenine base editing for Duchenne muscular dystrophy treatment in mouse. Mol Ther Nucleic Acids. 2024;35. https://doi.org/10.1016/j.omtn.2024.102165.
-
Li G, Jin M, Li Z, Xiao Q, Lin J, Yang D, et al. Mini-dCas13X–mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J. Clin. Investig. 2023;133. https://doi.org/10.1172/JCI162809.
-
Wang X, Zhang R, Yang D, Li G, Fan Z, Du H, et al. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv. Sci. 2023;10. https://doi.org/10.1002/advs.202206813.
-
Yuan J, Ma Y, Huang T, Chen Y, Peng Y, Li B, et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol Cell. 2018;72:380–.e7. https://doi.org/10.1016/J.MOLCEL.2018.09.002.
-
Qiu H, Li G, Yuan J, Yang D, Ma Y, Wang F, et al. Efficient exon skipping by base-editor-mediated abrogation of exonic splicing enhancers. Cell Rep 2023;42. https://doi.org/10.1016/j.celrep.2023.113340.
-
Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Atmanli A, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv 2021;7. https://doi.org/10.1126/sciadv.abg4910.
-
Chai AC, Chemello F, Li H, Nishiyama T, Chen K, Zhang Y, et al. Single-swap editing for the correction of common Duchenne muscular dystrophy mutations. Mol Ther Nucleic Acids. 2023;32:522–35. https://doi.org/10.1016/j.omtn.2023.04.009.
-
Gapinske M, Winter J, Swami D, Gapinske L, Woods WS, Shirguppe S, et al. Targeting Duchenne muscular dystrophy by skipping DMD exon 45 with base editors. Mol Ther Nucleic Acids. 2023;33:572–86. https://doi.org/10.1016/j.omtn.2023.07.029.
-
Li J, Wang K, Zhang Y, Qi T, Yuan J, Zhang L, et al. Therapeutic exon skipping through a CRISPR-guided cytidine deaminase rescues dystrophic cardiomyopathy in vivo. Circulation. 2021;144:1760–76. https://doi.org/10.1161/CIRCULATIONAHA.121.054628/SUPPL_FILE/CIRC_CIRCULATIONAHA-2021-054628_SUPP1.PDF.
-
Lin J, Jin M, Yang D, Li Z, Zhang Y, Xiao Q, et al. Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model. Nat Commun 2024;15. https://doi.org/10.1038/s41467-024-50340-x.
-
Li G, Dong X, Luo J, Yuan T, Li T, Zhao G, et al. Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation. Nat Commun. 2024;15:1–10. https://doi.org/10.1038/s41467-024-52485-1.
-
Jin H, Fu H, Wang J, Wang Z, Liu J, Han F, et al. Generation of a DMD loss-of-function mutant human embryonic stem cell lines by CRISPR base editing. Stem Cell Res. 2024;76:103343. https://doi.org/10.1016/J.SCR.2024.103343.
-
Escobar H, Krause A, Keiper S, Kieshauer J, Müthel S, de Paredes MG, et al. Base editing repairs an SGCA mutation in human primary muscle stem cells. JCI Insight. 2021;6. https://doi.org/10.1172/jci.insight.145994.
-
Šikrová D, Cadar VA, Ariyurek Y, Laros JFJ, Balog J, van der Maarel SM. Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. Mol Ther Nucleic Acids. 2021;25:342–54. https://doi.org/10.1016/j.omtn.2021.05.020.
-
Wang H, Krause A, Escobar H, Müthel S, Metzler E, Spuler S. LMNA co-regulated gene expression as a suitable readout after precise gene correction. Int J Mol Sci 2022;23. https://doi.org/10.3390/ijms232415525.
-
Ramirez-Martinez A, Zhang Y, van den Boogaard MJ, McAnally JR, Rodriguez-Caycedo C, Chai AC, et al. Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J Clin Invest. 2022;132. https://doi.org/10.1172/JCI159002.
-
Park JC, Kim J, Jang HK, Lee SY, Kim KT, Kwon EJ, et al. Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials. 2022;282:121419. https://doi.org/10.1016/J.BIOMATERIALS.2022.121419.
-
Hovhannisyan Y, Li Z, Callon D, Suspène R, Batoumeni V, Canette A, et al. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther. 2024;15:1–23. https://doi.org/10.1186/S13287-023-03619-7.
-
Cha JH, Lee SH, Yun Y, Choi WH, Koo H, Jung SH, et al. Discovery of novel disease-causing mutation in SSBP1 and its correction using adenine base editor to improve mitochondrial function. Mol Ther Nucleic Acids. 2024;35. https://doi.org/10.1016/J.OMTN.2024.102257.
-
Christensen CL, Kan SH, Andrade-Heckman P, Rha AK, Harb JF, Wang RY Base editing rescues acid α-glucosidase function in infantile-onset Pompe disease patient-derived cells. Mol Ther Nucleic Acids. 2024;35. https://doi.org/10.1016/J.OMTN.2024.102220.
-
Mbakam CH, Rousseau J, Tremblay G, Yameogo P, Tremblay JP. Prime editing permits the introduction of specific mutations in the gene responsible for duchenne muscular dystrophy. Int J Mol Sci. 2022;23:6160. https://doi.org/10.3390/ijms23116160.
-
Happi Mbakam C, Rousseau J, Lu Y, Bigot A, Mamchaoui K, Mouly V, et al. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Mol Ther Nucleic Acids. 2022;30:272–85. https://doi.org/10.1016/j.omtn.2022.09.022.
-
Wang Q, Capelletti S, Liu J, Janssen JM, Gonçalves MAFV. Selection-free precise gene repair using high-capacity adenovector delivery of advanced prime editing systems rescues dystrophin synthesis in DMD muscle cells. Nucleic Acids Res. 2024;52:2740–57. https://doi.org/10.1093/nar/gkae057.
-
Happi Mbakam C, Roustant J, Rousseau J, Yameogo P, Lu Y, Bigot A, et al. Prime editing strategies to mediate exon skipping in DMD gene. Front Med. 2023;10. https://doi.org/10.3389/fmed.2023.1128557.
-
Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F, Bönnemann C, Dirksen R, et al. 217th ENMC International Workshop: RYR1-related myopathies, Naarden, The Netherlands, 29–31 January 2016. Neuromuscul Disord. 2016;26:624–33. https://doi.org/10.1016/J.NMD.2016.06.001.
-
Godbout K, Rousseau J, Tremblay JP. Successful correction by prime editing of a mutation in the RYR1 gene responsible for a myopathy. Cells. 2024;13. https://doi.org/10.3390/cells13010031.
-
Godbout K, Dugas M, Reiken SR, Ramezani S, Falle A, Rousseau J, et al. Universal prime editing therapeutic strategy for RyR1-related myopathies: a protective mutation rescues leaky RyR1 channel. Int J Mol Sci. 2025;26:2835. https://doi.org/10.3390/IJMS26072835.
-
Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1:427–51. https://doi.org/10.1146/ANNUREV-VIROLOGY-031413-085355/CITE/REFWORKS.
-
Muraine L, Bensalah M, Dhiab J, Cordova G, Arandel L, Marhic A, et al. Transduction efficiency of adeno-associated virus serotypes after local injection in mouse and human skeletal muscle. Hum Gene Ther. 2020;31:233. https://doi.org/10.1089/HUM.2019.173.
-
Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng. 2020;4:97–110. https://doi.org/10.1038/s41551-019-0501-5.
-
Zhi S, Chen Y, Wu G, Wen J, Wu J, Liu Q, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Therapy. 2022;30:283–94. https://doi.org/10.1016/J.YMTHE.2021.07.011.
-
Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29:285–98. https://doi.org/10.1089/HUM.2018.015/ASSET/IMAGES/LARGE/FIGURE8.JPEG.
-
Ewaisha R, Anderson KS. Immunogenicity of CRISPR therapeutics—Critical considerations for clinical translation. Front Bioeng Biotechnol. 2023;11:1138596. https://doi.org/10.3389/FBIOE.2023.1138596.
-
Davis JR, Wang X, Witte IP, Huang TP, Levy JM, Raguram A, et al. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nat Biomed Eng. 2022;6:1272–83. https://doi.org/10.1038/s41551-022-00911-4.
-
Weinmann J, Weis S, Sippel J, Tulalamba W, Remes A, El Andari J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun. 2020;11:1–12. https://doi.org/10.1038/s41467-020-19230-w.
-
Tabebordbar M, Lagerborg KA, Stanton A, King EM, Ye S, Tellez L, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021;184:4919–38.e22. https://doi.org/10.1016/J.CELL.2021.08.028.
-
El Andari J, Renaud-Gabardos E, Tulalamba W, Weinmann J, Mangin L, Hong Pham Q, et al. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Sci Adv. 2022;8:4704. https://doi.org/10.1126/SCIADV.ABN4704/SUPPL_FILE/SCIADV.ABN4704_SM.PDF.
-
Vu Hong A, Suel L, Petat E, Dubois A, Le Brun PR, Guerchet N, et al. An engineered AAV targeting integrin alpha V beta 6 presents improved myotropism across species. Nat Commun. 2024;15:7965. https://doi.org/10.1038/S41467-024-52002-4.
-
Izzo M, Battistini J, Golini E, Voellenkle C, Provenzano C, Orsini T, et al. Muscle-specific gene editing improves molecular and phenotypic defects in a mouse model of myotonic dystrophy type 1. Clin Transl Med. 2025;15:e70227. https://doi.org/10.1002/CTM2.70227.
-
Guo Z, Zhu AT, Fang RH, Zhang L. Viral and nonviral nanocarriers for in vivo CRISPR-based gene editing. Nano Res. 2024;17:8904–25. https://doi.org/10.1007/S12274-024-6748-5.
-
Ortinski PI, O’Donovan B, Dong X, Kantor B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol Ther Methods Clin Dev. 2017;5:153–64. https://doi.org/10.1016/J.OMTM.2017.04.002/ATTACHMENT/31A80968-8316-4BC3-8EAF-A90E3DD6810A/MMC2.PDF.
-
Hindi SM, Petrany MJ, Greenfeld E, Focke LC, Cramer AAW, Whitt MA, et al. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. Cell. 2023;186:2062–77.e17. https://doi.org/10.1016/J.CELL.2023.03.033.
-
Beaufils M, Tourel A, Petiot A, Halmai NB, Segal DJ, Rendu J, et al. Development of knock-out muscle cell lines using lentivirus-mediated CRISPR/Cas9 gene editing. J Vis Exp. 2022;2022:e64114. https://doi.org/10.3791/64114.
-
Wang DN, Wang ZQ, Jin M, Lin MT, Wang N. CRISPR/Cas9-based genome editing for the modification of multiple duplications that cause Duchenne muscular dystrophy. Gene Ther. 2022;29:730–7. https://doi.org/10.1038/S41434-022-00336-3.
-
Zhou H, Wang X, Steer CJ, Song G, Niu J. Efficient silencing of hepatitis B virus S gene through CRISPR-mediated base editing. Hepatol Commun. 2022;6:1652–63. https://doi.org/10.1002/HEP4.1933.
-
Abutaleb NO, Gao XD, Bedapudi A, Choi L, Shores KL, Kennedy C, et al. Adenine base editing rescues pathogenic phenotypes in tissue engineered vascular model of Hutchinson-Gilford progeria syndrome. APL Bioeng 2025;9. https://doi.org/10.1063/5.0244026/3337408.
-
Mu H, Liu Y, Chi Y, Wang F, Meng S, Zhang Y, et al. Systematic optimization of prime editing for enhanced efficiency and versatility in genome engineering across diverse cell types. Front Cell Dev Biol. 2025;13:1589034. https://doi.org/10.3389/FCELL.2025.1589034/BIBTEX.
-
Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents. Cell. 2022;185:2806–27. https://doi.org/10.1016/J.CELL.2022.03.045.
-
Haldrup J, Andersen S, LaVilla Labial AR, Wolff JH, Frandsen FP, Skov TW, et al. Engineered lentivirus-derived nanoparticles (LVNPs) for delivery of CRISPR/Cas ribonucleoprotein complexes supporting base editing, prime editing and in vivo gene modification. Nucleic Acids Res. 2023;51:10059–74. https://doi.org/10.1093/NAR/GKAD676.
-
Banskota S, Raguram A, Suh S, Du SW, Davis JR, Choi EH, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 2022;185:250–.e16. https://doi.org/10.1016/J.CELL.2021.12.021.
-
An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol. 2024;42:1526–37. https://doi.org/10.1038/S41587-023-02078-Y.
-
Halegua T, Risson V, Carras J, Rouyer M, Coudert L, Jacquier A, et al. Delivery of Prime editing in human stem cells using pseudoviral NanoScribes particles. Nat Commun. 2025;16:1–12. https://doi.org/10.1038/s41467-024-55604-0.
-
Kenjo E, Hozumi H, Makita Y, Iwabuchi KA, Fujimoto N, Matsumoto S, et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun. 2021;12. https://doi.org/10.1038/S41467-021-26714-W.
-
Emami MR, Young CS, Ji Y, Liu X, Mokhonova E, Pyle AD, et al. Polyrotaxane nanocarriers can deliver CRISPR/Cas9 plasmid to dystrophic muscle cells to successfully edit the DMD Gene. Adv Ther. 2019;2. https://doi.org/10.1002/ADTP.201900061.
-
Gee P, Lung MSY, Okuzaki Y, Sasakawa N, Iguchi T, Makita Y, et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat Commun 2020;11. https://doi.org/10.1038/S41467-020-14957-Y.
-
Bagley JR, Denes LT, Mccarthy JJ, Wang ET, Murach KA, Bagley JR, et al. The myonuclear domain in adult skeletal muscle fibres: past, present and future. J Physiol. 2023;601:723–41. https://doi.org/10.1113/JP283658.
-
Morin A, Stantzou A, Petrova ON, Hildyard J, Tensorer T, Matouk M, et al. Dystrophin myonuclear domain restoration governs treatment efficacy in dystrophic muscle. Proc Natl Acad Sci USA 2023;120. https://doi.org/10.1073/PNAS.2206324120.
-
Hanson B, Stenler S, Ahlskog N, Chwalenia K, Svrzikapa N, Coenen-Stass AML, et al. Non-uniform dystrophin re-expression after CRISPR-mediated exon excision in the dystrophin/utrophin double-knockout mouse model of DMD. Mol Ther Nucleic Acids. 2022;30:379–97. https://doi.org/10.1016/j.omtn.2022.10.010.
-
Poukalov KK, Valero MC, Muscato DR, Adams LM, Chun H, Lee YIL, et al. Myospreader improves gene editing in skeletal muscle by myonuclear propagation. Proc Natl Acad Sci USA. 2024;121:e2321438121. https://doi.org/10.1073/PNAS.2321438121/SUPPL_FILE/PNAS.2321438121.SAPP.PDF.
-
Wallace GQ, Mcnally EM. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. 2024. https://doi.org/10.1146/annurev.physiol.010908.163216.
-
Kwon JB, Ettyreddy AR, Vankara A, Bohning JD, Devlin G, Hauschka SD, et al. In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of duchenne muscular dystrophy. Mol Ther Methods Clin Dev. 2020;19:320–9. https://doi.org/10.1016/j.omtm.2020.09.016.
