References
-
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid Nanoparticles for mRNA Delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).
-
Sahin, U. et al. COVID-19 Vaccine BNT162b1 Elicits Human Antibody and TH1 T Cell Responses. Nature 586, 594–599 (2020).
-
Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the Role of Helper Lipids in Lipid Nanoparticle Formulations of siRNA. Nanoscale 11, 21733–21739 (2019).
-
Buschmann, M. D. et al. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines 9, 65 (2021).
-
Xiao, W. et al. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Sig Transduct. Target Ther. 10, 74 (2025).
-
Wang, H.-X. et al. Nonviral Gene Editing via CRISPR/Cas9 Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide. Proc. Natl Acad. Sci. Usa. 115, 4903–4908 (2018).
-
van Niel, G., D’Angelo, G. & Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
-
Alix-Panabières, C. & Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 11, 858–873 (2021).
-
Li, P., Kaslan, M., Lee, S. H., Yao, J. & Gao, Z. Progress in Exosome Isolation Techniques. Theranostics 7, 789–804 (2017).
-
Akbarzadeh, A. et al. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 8, 102 (2013).
-
Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New Developments in Liposomal Drug Delivery. Chem. Rev. 115, 10938–10966 (2015).
-
Rigaud, J.-L. & Lévy, D. Reconstitution of Membrane Proteins into Liposomes. Methods Enzymol. 372, 65–86 (2003).
-
Denisov, I. G. & Sligar, S. G. Nanodiscs for Structural and Functional Studies of Membrane Proteins. Nat. Struct. Mol. Biol. 23, 481–486 (2016).
-
Levantini, E., Maroni, G., Del Re, M. & Tenen, D. G. EGFR Signaling Pathway as Therapeutic Target in Human Cancers. Semin. Cancer Biol. 85, 253–275 (2022).
-
Makinoshima, H. et al. Epidermal Growth Factor Receptor (EGFR) Signaling Regulates Global Metabolic Pathways in EGFR-Mutated Lung Adenocarcinoma *. J. Biol. Chem. 289, 20813–20823 (2014).
-
Sasabe, E. et al. Epidermal Growth Factor/Epidermal Growth Factor Receptor Signaling Blockage Inhibits Tumor Cell-Derived Exosome Uptake by Oral Squamous Cell Carcinoma through Macropinocytosis. Cancer Sci. 113, 609–621 (2022).
-
Yokoi, A. et al. Integrated Extracellular microRNA Profiling for Ovarian Cancer Screening. Nat. Commun. 9, 4319 (2018).
-
Hoshino, A. et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 527, 329–335 (2015).
-
Guerrini, L., Krpetić, Ž, van Lierop, D., Alvarez-Puebla, R. A. & Graham, D. Direct Surface-Enhanced Raman Scattering Analysis of DNA Duplexes. Angew. Chem. Int. Ed. Engl. 54, 1144–1148 (2015).
-
Jalali, M. et al. Plasmonic Nanobowtiefluidic Device for Sensitive Detection of Glioma Extracellular Vesicles by Raman Spectrometry. Lab. Chip 21, 855–866 (2021).
-
Saak, C.-M., Dreier, L. B., Machel, K., Bonn, M., & Backus, E. HG. Biological Lipid Hydration: Distinct Mechanisms of Interfacial Water Alignment and Charge Screening for Model Lipid Membranes. (2024). https://doi.org/10.1039/D3FD00117B.
-
Shen, H.-H., Lithgow, T. & Martin, L. L. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities. Int. J. Mol. Sci. 14, 1589–1607 (2013).
-
Veit, S., Paweletz, L. C. & Pomorski, T. G. Determination of Membrane Protein Orientation upon Liposomal Reconstitution down to the Single Vesicle Level. Biol. Chem. 404, 647–661 (2023).
-
Johnson, Z. L. & Lee, S.-Y. Chapter Seventeen – Liposome Reconstitution and Transport Assay for Recombinant Transporters. In Methods in Enzymology; Shukla, A. K., Ed.; Membrane Proteins—Production and Functional Characterization; Academic Press, 2015; Vol. 556, pp 373–383.
-
Rigaud, J.-L. & Lévy, D. Reconstitution of Membrane Proteins into Liposomes. In Methods in Enzymology; Liposomes, Part B; Academic Press, 2003; Vol. 372, pp 65–86.
-
Logozzi, M., Di Raimo, R., Mizzoni, D. & Fais, S. Immunocapture-Based ELISA to Characterize and Quantify Exosomes in Both Cell Culture Supernatants and Body Fluids. Methods Enzymol. 645, 155–180 (2020).
-
Goose, J. E. & Sansom, M. S. P. Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes. PLOS Comput. Biol. 9, e1003033 (2013).
-
Gamou, S. & Shimizu, N. Glycosylation of the Epidermal Growth Factor Receptor and Its Relationship to Membrane Transport and Ligand Binding1. J. Biochem. (Tokyo) 104, 388–396 (1988).
-
Sonnenberg, A. et al. Integrin Alpha 6/Beta 4 Complex Is Located in Hemidesmosomes, Suggesting a Major Role in Epidermal Cell-Basement Membrane Adhesion. J. Cell Biol. 113, 907–917 (1991).
-
Cedervall, T. et al. Understanding the Nanoparticle–Protein Corona Using Methods to Quantify Exchange Rates and Affinities of Proteins for Nanoparticles. Proc. Natl Acad. Sci. 104, 2050–2055 (2007).
-
Capaldi, X. et al. Probing the Organization and Dynamics of Two DNA Chains Trapped in a Nanofluidic Cavity. Soft Matter 14, 8455–8465 (2018).
-
Hosseini, I. I. et al. Nanofluidics for Simultaneous Size and Charge Profiling of Extracellular Vesicles. Nano Lett. 21, 4895–4902 (2021).
-
Liu, Z. et al. Characterizing Interaction of Multiple Nanocavity Confined Plasmids in Presence of Large DNA Model Nucleoid. Soft Matter 19, 6545–6555 (2023).
-
Jalali, M. et al. MoS2-Plasmonic Nanocavities for Raman Spectra of Single Extracellular Vesicles Reveal Molecular Progression in Glioblastoma. ACS Nano 17, 12052–12071 (2023).
-
Jalali, M., Lu, Y., del Real Mata, C., Rak, J. & Mahshid, S. Nanoscopic Technologies toward Molecular Profiling of Single Extracellular Vesicles for Cancer Liquid Biopsy. Appl. Phys. Rev. 12, 011312 (2025).
-
Morzy, D. et al. Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures. J. Am. Chem. Soc. 143, 7358–7367 (2021).
-
Ho, C.-S. et al. Rapid Identification of Pathogenic Bacteria Using Raman Spectroscopy and Deep Learning. Nat. Commun. 10, 4927 (2019).
-
Walter, A., März, A., Schumacher, W., Rösch, P. & Popp, J. Towards a Fast, High Specific and Reliable Discrimination of Bacteria on Strain Level by Means of SERS in a Microfluidic Device. Lab. Chip 11, 1013–1021 (2011).
-
Seifert, S. Application of Random Forest Based Approaches to Surface-Enhanced Raman Scattering Data. Sci. Rep. 10, 5436 (2020).
-
Hosseini, I. I. et al. Tunable Nanofluidic Device for Digital Nucleic Acid Analysis. Nanoscale 16, 9583–9592 (2024).
-
Katrukha, E., Teeuw, J., bmccloin; Braber, J. den. Ekatrukha/DoM_Utrecht: Detection of Molecules 1.2.5, 2022. https://doi.org/10.5281/zenodo.7326569.
