Proteoliposomes on 2D-MoS₂ plasmonic nanocavities for enhanced Raman spectroscopy with machine learning-based identification and classification

proteoliposomes-on-2d-mos₂-plasmonic-nanocavities-for-enhanced-raman-spectroscopy-with-machine-learning-based-identification-and-classification
Proteoliposomes on 2D-MoS₂ plasmonic nanocavities for enhanced Raman spectroscopy with machine learning-based identification and classification

References

  1. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid Nanoparticles for mRNA Delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Google Scholar 

  2. Sahin, U. et al. COVID-19 Vaccine BNT162b1 Elicits Human Antibody and TH1 T Cell Responses. Nature 586, 594–599 (2020).

    Google Scholar 

  3. Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the Role of Helper Lipids in Lipid Nanoparticle Formulations of siRNA. Nanoscale 11, 21733–21739 (2019).

    Google Scholar 

  4. Buschmann, M. D. et al. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines 9, 65 (2021).

    Google Scholar 

  5. Xiao, W. et al. Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Sig Transduct. Target Ther. 10, 74 (2025).

    Google Scholar 

  6. Wang, H.-X. et al. Nonviral Gene Editing via CRISPR/Cas9 Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide. Proc. Natl Acad. Sci. Usa. 115, 4903–4908 (2018).

    Google Scholar 

  7. van Niel, G., D’Angelo, G. & Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Google Scholar 

  8. Alix-Panabières, C. & Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 11, 858–873 (2021).

    Google Scholar 

  9. Li, P., Kaslan, M., Lee, S. H., Yao, J. & Gao, Z. Progress in Exosome Isolation Techniques. Theranostics 7, 789–804 (2017).

    Google Scholar 

  10. Akbarzadeh, A. et al. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 8, 102 (2013).

    Google Scholar 

  11. Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New Developments in Liposomal Drug Delivery. Chem. Rev. 115, 10938–10966 (2015).

    Google Scholar 

  12. Rigaud, J.-L. & Lévy, D. Reconstitution of Membrane Proteins into Liposomes. Methods Enzymol. 372, 65–86 (2003).

    Google Scholar 

  13. Denisov, I. G. & Sligar, S. G. Nanodiscs for Structural and Functional Studies of Membrane Proteins. Nat. Struct. Mol. Biol. 23, 481–486 (2016).

    Google Scholar 

  14. Levantini, E., Maroni, G., Del Re, M. & Tenen, D. G. EGFR Signaling Pathway as Therapeutic Target in Human Cancers. Semin. Cancer Biol. 85, 253–275 (2022).

    Google Scholar 

  15. Makinoshima, H. et al. Epidermal Growth Factor Receptor (EGFR) Signaling Regulates Global Metabolic Pathways in EGFR-Mutated Lung Adenocarcinoma *. J. Biol. Chem. 289, 20813–20823 (2014).

    Google Scholar 

  16. Sasabe, E. et al. Epidermal Growth Factor/Epidermal Growth Factor Receptor Signaling Blockage Inhibits Tumor Cell-Derived Exosome Uptake by Oral Squamous Cell Carcinoma through Macropinocytosis. Cancer Sci. 113, 609–621 (2022).

    Google Scholar 

  17. Yokoi, A. et al. Integrated Extracellular microRNA Profiling for Ovarian Cancer Screening. Nat. Commun. 9, 4319 (2018).

    Google Scholar 

  18. Hoshino, A. et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 527, 329–335 (2015).

    Google Scholar 

  19. Guerrini, L., Krpetić, Ž, van Lierop, D., Alvarez-Puebla, R. A. & Graham, D. Direct Surface-Enhanced Raman Scattering Analysis of DNA Duplexes. Angew. Chem. Int. Ed. Engl. 54, 1144–1148 (2015).

    Google Scholar 

  20. Jalali, M. et al. Plasmonic Nanobowtiefluidic Device for Sensitive Detection of Glioma Extracellular Vesicles by Raman Spectrometry. Lab. Chip 21, 855–866 (2021).

    Google Scholar 

  21. Saak, C.-M., Dreier, L. B., Machel, K., Bonn, M., & Backus, E. HG. Biological Lipid Hydration: Distinct Mechanisms of Interfacial Water Alignment and Charge Screening for Model Lipid Membranes. (2024). https://doi.org/10.1039/D3FD00117B.

  22. Shen, H.-H., Lithgow, T. & Martin, L. L. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities. Int. J. Mol. Sci. 14, 1589–1607 (2013).

    Google Scholar 

  23. Veit, S., Paweletz, L. C. & Pomorski, T. G. Determination of Membrane Protein Orientation upon Liposomal Reconstitution down to the Single Vesicle Level. Biol. Chem. 404, 647–661 (2023).

    Google Scholar 

  24. Johnson, Z. L. & Lee, S.-Y. Chapter Seventeen – Liposome Reconstitution and Transport Assay for Recombinant Transporters. In Methods in Enzymology; Shukla, A. K., Ed.; Membrane Proteins—Production and Functional Characterization; Academic Press, 2015; Vol. 556, pp 373–383.

  25. Rigaud, J.-L. & Lévy, D. Reconstitution of Membrane Proteins into Liposomes. In Methods in Enzymology; Liposomes, Part B; Academic Press, 2003; Vol. 372, pp 65–86.

  26. Logozzi, M., Di Raimo, R., Mizzoni, D. & Fais, S. Immunocapture-Based ELISA to Characterize and Quantify Exosomes in Both Cell Culture Supernatants and Body Fluids. Methods Enzymol. 645, 155–180 (2020).

    Google Scholar 

  27. Goose, J. E. & Sansom, M. S. P. Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes. PLOS Comput. Biol. 9, e1003033 (2013).

    Google Scholar 

  28. Gamou, S. & Shimizu, N. Glycosylation of the Epidermal Growth Factor Receptor and Its Relationship to Membrane Transport and Ligand Binding1. J. Biochem. (Tokyo) 104, 388–396 (1988).

    Google Scholar 

  29. Sonnenberg, A. et al. Integrin Alpha 6/Beta 4 Complex Is Located in Hemidesmosomes, Suggesting a Major Role in Epidermal Cell-Basement Membrane Adhesion. J. Cell Biol. 113, 907–917 (1991).

    Google Scholar 

  30. Cedervall, T. et al. Understanding the Nanoparticle–Protein Corona Using Methods to Quantify Exchange Rates and Affinities of Proteins for Nanoparticles. Proc. Natl Acad. Sci. 104, 2050–2055 (2007).

    Google Scholar 

  31. Capaldi, X. et al. Probing the Organization and Dynamics of Two DNA Chains Trapped in a Nanofluidic Cavity. Soft Matter 14, 8455–8465 (2018).

    Google Scholar 

  32. Hosseini, I. I. et al. Nanofluidics for Simultaneous Size and Charge Profiling of Extracellular Vesicles. Nano Lett. 21, 4895–4902 (2021).

    Google Scholar 

  33. Liu, Z. et al. Characterizing Interaction of Multiple Nanocavity Confined Plasmids in Presence of Large DNA Model Nucleoid. Soft Matter 19, 6545–6555 (2023).

    Google Scholar 

  34. Jalali, M. et al. MoS2-Plasmonic Nanocavities for Raman Spectra of Single Extracellular Vesicles Reveal Molecular Progression in Glioblastoma. ACS Nano 17, 12052–12071 (2023).

    Google Scholar 

  35. Jalali, M., Lu, Y., del Real Mata, C., Rak, J. & Mahshid, S. Nanoscopic Technologies toward Molecular Profiling of Single Extracellular Vesicles for Cancer Liquid Biopsy. Appl. Phys. Rev. 12, 011312 (2025).

    Google Scholar 

  36. Morzy, D. et al. Cations Regulate Membrane Attachment and Functionality of DNA Nanostructures. J. Am. Chem. Soc. 143, 7358–7367 (2021).

    Google Scholar 

  37. Ho, C.-S. et al. Rapid Identification of Pathogenic Bacteria Using Raman Spectroscopy and Deep Learning. Nat. Commun. 10, 4927 (2019).

    Google Scholar 

  38. Walter, A., März, A., Schumacher, W., Rösch, P. & Popp, J. Towards a Fast, High Specific and Reliable Discrimination of Bacteria on Strain Level by Means of SERS in a Microfluidic Device. Lab. Chip 11, 1013–1021 (2011).

    Google Scholar 

  39. Seifert, S. Application of Random Forest Based Approaches to Surface-Enhanced Raman Scattering Data. Sci. Rep. 10, 5436 (2020).

    Google Scholar 

  40. Hosseini, I. I. et al. Tunable Nanofluidic Device for Digital Nucleic Acid Analysis. Nanoscale 16, 9583–9592 (2024).

    Google Scholar 

  41. Katrukha, E., Teeuw, J., bmccloin; Braber, J. den. Ekatrukha/DoM_Utrecht: Detection of Molecules 1.2.5, 2022. https://doi.org/10.5281/zenodo.7326569.

Download references