References
-
Dokl, M. et al. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustain. Prod. Consump. 51, 498–518. https://doi.org/10.1016/j.spc.2024.09.025 (2024).
-
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782. https://doi.org/10.1126/sciadv.1700782 (2017).
-
Andoh, C. N., Attiogbe, F., Bonsu Ackerson, N. O., Antwi, M. & Adu-Boahen, K. Fourier Transform Infrared Spectroscopy: An analytical technique for microplastic identification and quantification. Infrared Phys. Technol. 136, 105070. https://doi.org/10.1016/j.infrared.2023.105070 (2024).
-
Jakubowicz, I., Enebro, J. & Yarahmadi, N. Challenges in the search for nanoplastics in the environment—A critical review from the polymer science perspective. Polym. Testing 93, 106953. https://doi.org/10.1016/j.polymertesting.2020.106953 (2021).
-
Boughbina-Portolés, A. & Campíns-Falcó, P. Assessing the size transformation of nanoplastics in natural water matrices. Sci. Total Environ. 953, 176225. https://doi.org/10.1016/j.scitotenv.2024.176225 (2024).
-
Wu, X. et al. Critical effect of biodegradation on long-term microplastic weathering in sediment environments: A systematic review. J. Hazard. Mater. 437, 129287. https://doi.org/10.1016/j.jhazmat.2022.129287 (2022).
-
Chubarenko, I., Efimova, I., Bagaeva, M., Bagaev, A. & Isachenko, I. On mechanical fragmentation of single-use plastics in the sea swash zone with different types of bottom sediments: Insights from laboratory experiments. Mar. Pollut. Bull. 150, 110726. https://doi.org/10.1016/j.marpolbul.2019.110726 (2020).
-
Li, M. et al. Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand. Environ. Sci. Technol. 53, 3547–3557. https://doi.org/10.1021/acs.est.8b06904 (2019).
-
Arp, H. P. H. et al. Weathering plastics as a planetary boundary threat: exposure, fate, and hazards. Environ. Sci. Technol. 55, 7246–7255. https://doi.org/10.1021/acs.est.1c01512 (2021).
-
Wu, X. et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Res. 188, 116456. https://doi.org/10.1016/j.watres.2020.116456 (2021).
-
Wu, X. et al. Photo aging of polypropylene microplastics in estuary water and coastal seawater: Important role of chlorine ion. Water Res. 202, 117396. https://doi.org/10.1016/j.watres.2021.117396 (2021).
-
Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, F. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Mar. Environ. Res. 158, 104949. https://doi.org/10.1016/j.marenvres.2020.104949 (2020).
-
Barría, C., Brandts, I., Tort, L., Oliveira, M. & Teles, M. Effect of nanoplastics on fish health and performance: A review. Mar. Pollut. Bull. 151, 110791. https://doi.org/10.1016/j.marpolbul.2019.110791 (2020).
-
Wang, W. et al. Effects of polyethylene microplastics on cell membranes: A combined study of experiments and molecular dynamics simulations. J. Hazard Mater. 429, 128323. https://doi.org/10.1016/j.jhazmat.2022.128323 (2022).
-
Zaki, M. R. M. & Aris, A. Z. An overview of the effects of nanoplastics on marine organisms. Sci. Total Environ. 831, 154757. https://doi.org/10.1016/j.scitotenv.2022.154757 (2022).
-
Ferreira, I., Venâncio, C., Lopes, I. & Oliveira, M. Nanoplastics and marine organisms: What has been studied?. Environ. Toxicol. Pharmacol. 67, 1–7. https://doi.org/10.1016/j.etap.2019.01.006 (2019).
-
Gonçalves, J. M. & Bebianno, M. J. Nanoplastics impact on marine biota: A review. Environ. Pollut. 273, 116426. https://doi.org/10.1016/j.envpol.2021.116426 (2021).
-
Pérez-Reverón, R. et al. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. Environ. Pollut. 317, 120788. https://doi.org/10.1016/j.envpol.2022.120788 (2023).
-
Eberhard, T., Casillas, G., Zarus, G. M. & Barr, D. B. Systematic review of microplastics and nanoplastics in indoor and outdoor air: identifying a framework and data needs for quantifying human inhalation exposures. J. Expo Sci. Environ. Epidemiol. 34, 185–196. https://doi.org/10.1038/s41370-023-00634-x (2024).
-
Yan, Z. et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environ. Sci. Technol. 56, 414–421. https://doi.org/10.1021/acs.est.1c03924 (2022).
-
Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124. https://doi.org/10.1016/j.jhazmat.2021.126124 (2021).
-
Abbasi, S. & Turner, A. Human exposure to microplastics: A study in Iran. J. Hazard. Mater. 403, 123799. https://doi.org/10.1016/j.jhazmat.2020.123799 (2021).
-
Nihart, A. J. et al. Bioaccumulation of microplastics in decedent human brains. Nat. Med. https://doi.org/10.1038/s41591-024-03453-1 (2025).
-
Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199. https://doi.org/10.1016/j.envint.2022.107199 (2022).
-
Ragusa, A. et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 146, 106274. https://doi.org/10.1016/j.envint.2020.106274 (2021).
-
Xu, D., Ma, Y., Han, X. & Chen, Y. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J. Hazard. Mater. 417, 126092. https://doi.org/10.1016/j.jhazmat.2021.126092 (2021).
-
Domenech, J. et al. Long-term effects of polystyrene nanoplastics in human intestinal Caco-2 cells. Biomolecules. 11 (2021).
-
An, R. et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 449, 152665. https://doi.org/10.1016/j.tox.2020.152665 (2021).
-
Shen, R. et al. Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/STING pathway. Environ. Pollut. 300, 118986. https://doi.org/10.1016/j.envpol.2022.118986 (2022).
-
Chen, Y.-C. et al. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations. J. Hazard. Mater. 427, 127871. https://doi.org/10.1016/j.jhazmat.2021.127871 (2022).
-
Yang, Q. et al. Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine. Cell Rep. 42, 112346. https://doi.org/10.1016/j.celrep.2023.112346 (2023).
-
Wang, X. et al. Effects of polystyrene nanoplastic gestational exposure on mice. Chemosphere 324, 138255. https://doi.org/10.1016/j.chemosphere.2023.138255 (2023).
-
Jin, H. et al. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater. 401, 123430. https://doi.org/10.1016/j.jhazmat.2020.123430 (2021).
-
Fournier, S. B. et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part. Fibre Toxicol. 17, 55. https://doi.org/10.1186/s12989-020-00385-9 (2020).
-
Myers, S. D. Jr., Streiff, M., Dulberger, A. R., American, M. & Sanders, C. D. Polymethylmethacrylate pulmonary embolism following vertebroplasty. Cureus 13, e17314. https://doi.org/10.7759/cureus.17314 (2021).
-
Rodriguez-Arguisjuela, M. et al. Lung injury in patients age 75 years and older with the use of polymethylmethacrylate fenestrated pedicle screws. Spine J. 21, 430–437. https://doi.org/10.1016/j.spinee.2020.11.006 (2021).
-
Venmans, A., Lohle, P. N. M., van Rooij, W. J., Verhaar, H. J. J. & Mali, W. P. T. M. Frequency and outcome of pulmonary polymethylmethacrylate embolism during percutaneous vertebroplasty. Am. J. Neuroradiol. 29, 1983. https://doi.org/10.3174/ajnr.A1269 (2008).
-
Bhat, M. A. Airborne microplastic contamination across diverse university indoor environments: A comprehensive ambient analysis. Air Qual. Atmos. Health 17, 1851–1866. https://doi.org/10.1007/s11869-024-01548-9 (2024).
-
Gossmann, I. et al. Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air. Nat. Commun. 14, 3707. https://doi.org/10.1038/s41467-023-39340-5 (2023).
-
Development(OECD), O. f. E. C.-o. a. Test No. 412: Subacute Inhalation Toxicity: 28-Day Study. (2018).
-
Zielonka, T. M., Wałajtys-Rode, E., Chazan, R. & Droszcz, W. Extracellular components of bronchoalveolar lavage fluid (BALF) as a marker of interstitial pulmonary disease activity. I. Protein concentration. Przegl Lek 55, 581–585 (1998).
-
Davidson, K. R., Ha, D. M., Schwarz, M. I. & Chan, E. D. Bronchoalveolar lavage as a diagnostic procedure: a review of known cellular and molecular findings in various lung diseases. J. Thorac. Dis. 12, 4991–5019. https://doi.org/10.21037/jtd-20-651 (2020).
-
Hayden, J. M. et al. Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol. J. Lipid Res. 43, 26–35 (2002).
-
Kwak, D. et al. CD36/Lyn kinase interactions within macrophages promotes pulmonary fibrosis in response to oxidized phospholipid. Respir. Res. 24, 314. https://doi.org/10.1186/s12931-023-02629-6 (2023).
-
Yang, S. et al. Inhalation exposure to polystyrene nanoplastics induces chronic obstructive pulmonary disease-like lung injury in mice through multi-dimensional assessment. Environ. Pollut. 347, 123633. https://doi.org/10.1016/j.envpol.2024.123633 (2024).
-
Zhang, T. et al. Multi-dimensional evaluation of cardiotoxicity in mice following respiratory exposure to polystyrene nanoplastics. Part Fibre Toxicol. 20, 46. https://doi.org/10.1186/s12989-023-00557-3 (2023).
-
Wang, Q. et al. Polystyrene nanoplastics aggravate house dust mite induced allergic airway inflammation through EGFR/ERK-dependent lung epithelial barrier dysfunction. Ecotoxicol. Environ. Saf. 298, 118329. https://doi.org/10.1016/j.ecoenv.2025.118329 (2025).
-
Geiser, M. & Kreyling, W. G. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 7, 2. https://doi.org/10.1186/1743-8977-7-2 (2010).
-
Sukhanova, A. et al. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 13, 44. https://doi.org/10.1186/s11671-018-2457-x (2018).
-
Gonzalez-Vega, J. G. et al. Lung models to evaluate silver nanoparticles’ toxicity and their impact on human health. Nanomaterials (Basel). 12, https://doi.org/10.3390/nano12132316 (2022).
-
Hunschede, S., Kubant, R., Akilen, R., Thomas, S. & Anderson, G. H. Decreased appetite after high-intensity exercise correlates with increased plasma interleukin-6 in normal-weight and overweight/obese boys. Curr. Dev. Nutr. 1, e000398. https://doi.org/10.3945/cdn.116.000398 (2017).
-
Patsalos, O., Dalton, B. & Himmerich, H. Effects of IL-6 signaling pathway inhibition on weight and BMI: A systematic review and meta-analysis. Int. J. Mol. Sci. 21 (2020).
-
Romanatto, T. et al. TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient–effects on leptin and insulin signaling pathways. Peptides 28, 1050–1058. https://doi.org/10.1016/j.peptides.2007.03.006 (2007).
-
Patsalos, O., Dalton, B., Leppanen, J., Ibrahim, M. A. A. & Himmerich, H. Impact of TNF-α inhibitors on body weight and bmi: a systematic review and meta-analysis. Front. Pharmacol. 11, 481. https://doi.org/10.3389/fphar.2020.00481 (2020).
-
Noël-Georis, I., Bernard, A., Falmagne, P. & Wattiez, R. Database of bronchoalveolar lavage fluid proteins. J. Chromatogr. B 771, 221–236. https://doi.org/10.1016/S1570-0232(02)00114-9 (2002).
-
Domagała-Kulawik, J., Skirecki, T., Maskey-Warzechowska, M., Grubek-Jaworska, H. & Chazan, R. Bronchoalveolar lavage total cell count in interstitial lung diseases—does it matter?. Inflammation 35, 803–809. https://doi.org/10.1007/s10753-011-9378-5 (2012).
-
Yang, Y. et al. Bronchoalveolar lavage fluid-derived exosomes: a novel role contributing to lung cancer growth. Front. Oncol. 9, 197. https://doi.org/10.3389/fonc.2019.00197 (2019).
-
Sobiecka, M. et al. Bronchoalveolar lavage cell count and lymphocytosis are the important discriminators between fibrotic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis. Diagnostics (Basel). 13, https://doi.org/10.3390/diagnostics13050935 (2023).
-
Agarwal, P., Gordon, S. & Martinez, F. O. Foam cell macrophages in tuberculosis. Front. Immunol. 12, 775326. https://doi.org/10.3389/fimmu.2021.775326 (2021).
-
Romero, F. et al. A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis. Am. J. Respir. Cell Mol. Biol. 53, 74–86. https://doi.org/10.1165/rcmb.2014-0343OC (2015).
-
Hsieh, M. H. et al. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol. Immunol. 20, 38–50. https://doi.org/10.1038/s41423-022-00946-2 (2023).
-
Ordway, D., Henao-Tamayo, M., Orme, I. M. & Gonzalez-Juarrero, M. Foamy macrophages within lung granulomas of mice infected with Mycobacterium tuberculosis express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family. J. Immunol. 175, 3873–3881. https://doi.org/10.4049/jimmunol.175.6.3873 (2005).
-
Chrabańska, M., Mazur, A. & Stęplewska, K. Histopathological pulmonary findings of survivors and autopsy COVID-19 cases: A bi-center study. Medicine. 101 (2022).
-
Zhu, Y., Choi, D., Somanath, P. R. & Zhang, D. Lipid-laden macrophages in pulmonary diseases. Cells. 13, https://doi.org/10.3390/cells13110889 (2024).
-
Pramanik, S. & Sil, A. K. Cigarette smoke extract induces foam cell formation by impairing machinery involved in lipid droplet degradation. Pflugers Arch. 476, 59–74. https://doi.org/10.1007/s00424-023-02870-4 (2024).
-
Liu, J. et al. PM2.5 aggravates the lipid accumulation, mitochondrial damage and apoptosis in macrophage foam cells. Environ. Pollut. 249, 482–490. https://doi.org/10.1016/j.envpol.2019.03.045 (2019).
-
Cao, Y. et al. Foam cell formation by particulate matter (PM) exposure: a review. Inhal. Toxicol. 28, 583–590. https://doi.org/10.1080/08958378.2016.1236157 (2016).
-
Guo, C. et al. Silica nanoparticles promoted pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. Sci. Total Environ. 881, 163430. https://doi.org/10.1016/j.scitotenv.2023.163430 (2023).
-
Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity 54, 1561–1577. https://doi.org/10.1016/j.immuni.2021.05.003 (2021).
-
Li, X. et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/beta-catenin signaling pathway in mice. Ecotoxicol. Environ. Saf. 232, 113238. https://doi.org/10.1016/j.ecoenv.2022.113238 (2022).
-
Kwabena Danso, I., Woo, J. H., Hoon Baek, S., Kim, K. & Lee, K. Pulmonary toxicity assessment of polypropylene, polystyrene, and polyethylene microplastic fragments in mice. Toxicol. Res. 40, 313–323. https://doi.org/10.1007/s43188-023-00224-x (2024).
-
Gou, Z., Wu, H., Li, S., Liu, Z. & Zhang, Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol. 21, 50. https://doi.org/10.1186/s12989-024-00613-6 (2024).
-
Woo, J. H. et al. Polypropylene nanoplastic exposure leads to lung inflammation through p38-mediated NF-kappaB pathway due to mitochondrial damage. Part Fibre Toxicol. 20, 2. https://doi.org/10.1186/s12989-022-00512-8 (2023).
-
Jin, Y. J. et al. Characterisation of changes in global genes expression in the lung of ICR mice in response to the inflammation and fibrosis induced by polystyrene nanoplastics inhalation. Toxicol. Res. 39, 1–25. https://doi.org/10.1007/s43188-023-00188-y (2023).
-
Ma, R. et al. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE(-/-) mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage. Part Fibre Toxicol. 17, 50. https://doi.org/10.1186/s12989-020-00380-0 (2020).
-
Gibb, A. A., Lazaropoulos, M. P. & Elrod, J. W. Myofibroblasts and fibrosis: Mitochondrial and metabolic control of cellular differentiation. Circ. Res. 127, 427–447. https://doi.org/10.1161/CIRCRESAHA.120.316958 (2020).
-
Zhang, Y. et al. Coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and epithelial–mesenchymal transition via the NF-kappaB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3beta signals. Cell Death Discov. 8, 500. https://doi.org/10.1038/s41420-022-01291-z (2022).
-
Zhang, G. et al. Titanium nanoparticles released from orthopedic implants induce muscle fibrosis via activation of SNAI2. J. Nanobiotechnol. 22, 522. https://doi.org/10.1186/s12951-024-02762-4 (2024).
-
Giacalone, V. D., Margaroli, C., Mall, M. A. & Tirouvanziam, R. Neutrophil adaptations upon recruitment to the lung: new concepts and implications for homeostasis and disease. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21030851 (2020).
-
Kessenbrock, K., Dau, T. & Jenne, D. E. Tailor-made inflammation: how neutrophil serine proteases modulate the inflammatory response. J. Mol. Med. (Berl) 89, 23–28. https://doi.org/10.1007/s00109-010-0677-3 (2011).
-
Veenith, T. et al. High generation of reactive oxygen species from neutrophils in patients with severe COVID-19. Sci. Rep. 12, 10484. https://doi.org/10.1038/s41598-022-13825-7 (2022).
-
Nguyen, G. T., Green, E. R. & Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH oxidase activation and bacterial resistance. Front. Cell Infect. Microbiol. 7, 373. https://doi.org/10.3389/fcimb.2017.00373 (2017).
-
Larosa, D. F. & Orange, J. S. 1. Lymphocytes. J Allergy Clin Immunol 121, S364–369; quiz S412, https://doi.org/10.1016/j.jaci.2007.06.016 (2008).
-
Ott, L. W. et al. Tumor necrosis factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information. J. Proteome Res. 6, 2176–2185. https://doi.org/10.1021/pr060665l (2007).
-
Dinarello, C. A. Proinflammatory cytokines. Chest 118, 503–508. https://doi.org/10.1378/chest.118.2.503 (2000).
-
Kwon, H.-J. et al. Tumor necrosis factor alpha induction of NF-κB requires the novel coactivator SIMPL. Mol. Cell. Biol. 24, 9317–9326. https://doi.org/10.1128/MCB.24.21.9317-9326.2004 (2004).
-
Vig, E. et al. SIMPL is a tumor necrosis factor-specific regulator of nuclear factor-κB activity *. J. Biol. Chem. 276, 7859–7866. https://doi.org/10.1074/jbc.M010399200 (2001).
-
Vig, E. et al. Modulation of tumor necrosis factor and interleukin-1-dependent NF-κB activity by mPLK/IRAK *. J. Biol. Chem. 274, 13077–13084. https://doi.org/10.1074/jbc.274.19.13077 (1999).
-
Tosato, G. & Jones, K. D. Interleukin-1 induces interleukin-6 production in peripheral blood monocytes. Blood 75, 1305–1310 (1990).
-
Confalone, E., D’Alessio, G. & Furia, A. IL-6 induction by TNFα and IL-1β in an osteoblast-like cell line. Int. J. Biomed. Sci. 6, 135–140 (2010).
-
Wang, Z. Y. & Bjorling, D. E. Tumor necrosis factor-α induces expression and release of interleukin-6 by human urothelial cells. Inflamm. Res. 60, 525–532. https://doi.org/10.1007/s00011-010-0298-x (2011).
-
Angelovich, T. A., Hearps, A. C. & Jaworowski, A. Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol. Cell Biol. 93, 683–693. https://doi.org/10.1038/icb.2015.26 (2015).
-
Guerrini, V. & Gennaro, M. L. Foam cells: One size doesn’t fit all. Trends Immunol. 40, 1163–1179. https://doi.org/10.1016/j.it.2019.10.002 (2019).
-
Zhang, H. Y., Gharaee-Kermani, M., Zhang, K., Karmiol, S. & Phan, S. H. Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 148, 527–537 (1996).
-
Mei, Q., Liu, Z., Zuo, H., Yang, Z. & Qu, J. Idiopathic pulmonary fibrosis: an update on pathogenesis. Front. Pharmacol. 12, 797292. https://doi.org/10.3389/fphar.2021.797292 (2021).
-
Degryse, A. L. & Lawson, W. E. Progress toward improving animal models for idiopathic pulmonary fibrosis. Am. J. Med. Sci. 341, 444–449. https://doi.org/10.1097/MAJ.0b013e31821aa000 (2011).
-
Borthwick, L. A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 38, 517–534. https://doi.org/10.1007/s00281-016-0559-z (2016).
-
Newby, A. & Thomas, A. Foam cell formation in vivo is pro-fibrotic. Atherosclerosis 241, e81–e82. https://doi.org/10.1016/j.atherosclerosis.2015.04.286 (2015).
-
Choudhury, A. et al. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system. Ecotoxicol. Environ. Saf. 259, 115018. https://doi.org/10.1016/j.ecoenv.2023.115018 (2023).
-
Luo, D. et al. Micro- and nano-plastics in the atmosphere: A review of occurrence, properties and human health risks. J. Hazard. Mater. 465, 133412. https://doi.org/10.1016/j.jhazmat.2023.133412 (2024).
