Reconstitution of DNA fragments on HAC/MAC via the fragment-assembly system

reconstitution-of-dna-fragments-on-hac/mac-via-the-fragment-assembly-system
Reconstitution of DNA fragments on HAC/MAC via the fragment-assembly system

Data availability

The nucleotide sequences of the gene-loading pad and GLVs constructed in this study were deposited in the DNA Data Bank of Japan (DDBJ) repository [accession number LC884821 to LC884827]. Uncropped images of gels and blots are shown in Supplementary Fig. 6. All other data are available in this manuscript or the supplementary materials.

References

  1. Tomizuka, K. et al. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat. Genet. 16, 133–143. https://doi.org/10.1038/ng0697-133 (1997).

    Google Scholar 

  2. Kazuki, Y. et al. Trans-chromosomic mice containing a human CYP3A cluster for prediction of xenobiotic metabolism in humans. Hum. Mol. Genet. 22, 578–592. https://doi.org/10.1093/hmg/dds468 (2013).

    Google Scholar 

  3. Hoshiya, H. et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol. Ther. 17, 309–317. https://doi.org/10.1038/mt.2008.253 (2009).

    Google Scholar 

  4. Kazuki, Y. et al. Complete genetic correction of ips cells from Duchenne muscular dystrophy. Mol. Ther. 18, 386–393. https://doi.org/10.1038/mt.2009.274 (2010).

    Google Scholar 

  5. Suzuki, T., Kazuki, Y., Hara, T. & Oshimura, M. Current advances in microcell-mediated chromosome transfer technology and its applications. Exp. Cell. Res. 390, 111915. https://doi.org/10.1016/j.yexcr.2020.111915 (2020).

    Google Scholar 

  6. Hiratsuka, M. et al. Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS One. 6, e25961. https://doi.org/10.1371/journal.pone.0025961 (2011).

    Google Scholar 

  7. Yamaguchi, S. et al. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS One. 6, e17267. https://doi.org/10.1371/journal.pone.0017267 (2011).

    Google Scholar 

  8. Jensen, O. et al. A double-Flp-in method for stable overexpression of two genes. Sci. Rep. 10, 14018. https://doi.org/10.1038/s41598-020-71051-5 (2020).

    Google Scholar 

  9. Tóth, A. et al. Novel method to load multiple genes onto a mammalian artificial chromosome. PLoS One. 9, e85565. https://doi.org/10.1371/journal.pone.0085565 (2014).

    Google Scholar 

  10. Suzuki, T., Kazuki, Y., Oshimura, M. & Hara, T. A novel system for simultaneous or sequential integration of multiple gene-loading vectors into a defined site of a human artificial chromosome. PLoS One. 9, e110404. https://doi.org/10.1371/journal.pone.0110404 (2014).

    Google Scholar 

  11. Uno, N. et al. Panel of human cell lines with human/mouse artificial chromosomes. Sci. Rep. 12, 3009. https://doi.org/10.1038/s41598-022-06814-3 (2022).

    Google Scholar 

  12. Suzuki, T. et al. A novel all-in-one conditional knockout system uncovered an essential role of DDX1 in ribosomal RNA processing. Nucleic Acids Res. 49, e40. https://doi.org/10.1093/nar/gkaa1296 (2021).

    Google Scholar 

  13. Uno, N. et al. A luciferase complementation assay system using transferable mouse artificial chromosomes to monitor protein-protein interactions mediated by G protein-coupled receptors. Cytotechnology 70, 1499–1508. https://doi.org/10.1007/s10616-018-0231-7 (2018).

    Google Scholar 

  14. Kishima, N. et al. Generation of transchromosomic mice harboring HLA-A/B/C and human B2M via mouse artificial chromosome and triple BAC integration. Sci. Rep. 15, 27852. https://doi.org/10.1038/s41598-025-13138-5 (2025).

    Google Scholar 

  15. Schlake, T. & Bode, J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33, 12746–12751. https://doi.org/10.1021/bi00209a003 (1994).

    Google Scholar 

  16. Ghosh, P., Kim, A. I. & Hatfull, G. F. The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol. Cell. 12, 1101–1111. https://doi.org/10.1016/s1097-2765(03)00444-1 (2003).

    Google Scholar 

  17. Smith, M. C. & Till, R. Switching the polarity of a bacteriophage integration system. Mol. Microbiol. 51, 1719–1728. https://doi.org/10.1111/j.1365-2958.2003.03942.x (2004).

    Google Scholar 

  18. Lu, Y., Liang, F. X. & Wang, X. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. Mol. Cell. 55, 758–770. https://doi.org/10.1016/j.molcel.2014.06.032 (2014).

    Google Scholar 

  19. Suzuki, T. et al. DDX1 is required for non-spliceosomal splicing of tRNAs but not of XBP1 mRNA. Commun. Biol. 8, 92. https://doi.org/10.1038/s42003-025-07523-z (2025).

    Google Scholar 

  20. Yamazaki, K. et al. Simultaneous loading of PCR-based multiple fragments on mouse artificial chromosome vectors in DT40 cell for gene delivery. Sci. Rep. 12, 21790. https://doi.org/10.1038/s41598-022-25959-9 (2022).

    Google Scholar 

  21. Durrant, M. G. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 41, 488–499. https://doi.org/10.1038/s41587-022-01494-w (2023).

    Google Scholar 

  22. Takiguchi, M. et al. A novel and stable mouse artificial chromosome vector. ACS Synth. Biol. 3, 903–914. https://doi.org/10.1021/sb3000723 (2014).

    Google Scholar 

  23. Su’etsugu, M., Takada, H., Katayama, T. & Tsujimoto, H. Exponential propagation of large circular DNA by reconstitution of a chromosome-replication cycle. Nucleic Acids Res. 45, 11525–11534. https://doi.org/10.1093/nar/gkx822 (2017).

    Google Scholar 

  24. Suzuki, T., Kazuki, Y., Oshimura, M. & Hara, T. Highly efficient transfer of chromosomes to a broad range of target cells using Chinese hamster ovary cells expressing murine leukemia virus-derived envelope proteins. PLoS One. 11, e0157187. https://doi.org/10.1371/journal.pone.0157187 (2016).

    Google Scholar 

Download references

Acknowledgements

We thank Saki An, Fuyuko Yoshida, and Anna Suzuki for their technical support. This research was partially conducted at the Tottori Bio Frontier, which is managed by Tottori Prefecture.

Funding

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI [grant numbers JP18K06047 (T.S.)], Joint Research of the Exploratory Research Center on Life and Living Systems (ExCELLS) [ExCELLS program No. 21–101 (Y.K.) and 25EXC604 (Y.K. and T.S.)], Research Support Project for Life Science and Drug Discovery (BINDS) from AMED under grant number JP25ama121046 (Y.K.), AMED under grant number JP25gm0010010 (Y.K.), and the Core Research for Evolutionary Science and Technology (CREST) program of the Japanese Science and Technology Agency (JST) [grant number JPMJCR18S4 (Y.K. and T.S.)].

Author information

Authors and Affiliations

  1. Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan

    Teruhiko Suzuki, Mana Yamakawa, Shiho Sasaki & Takahiko Hara

  2. Immunomedicine Group, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan

    Teruhiko Suzuki & Mana Yamakawa

  3. Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, 683-8503, Japan

    Akane Okada, Kanako Kazuki, Satoshi Abe & Yasuhiro Kazuki

  4. Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan

    Seia Nara & Masayuki Su’etsugu

  5. Moderna Enzymatics, Co., Ltd, 2-3-8 Shinkiba, Koto-ku, Tokyo, 136-0082, Japan

    Seia Nara

  6. Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan

    Takahiko Hara

  7. Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan

    Takahiko Hara

  8. Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan

    Yasuhiro Kazuki

  9. Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan

    Yasuhiro Kazuki

Authors

  1. Teruhiko Suzuki
  2. Mana Yamakawa
  3. Shiho Sasaki
  4. Akane Okada
  5. Kanako Kazuki
  6. Satoshi Abe
  7. Seia Nara
  8. Masayuki Su’etsugu
  9. Takahiko Hara
  10. Yasuhiro Kazuki

Contributions

T.S., Y.K., and T.H., conceptualization; T.S., M.Y., S.S., A.O, K.K, S.A., and S.N., investigation; T.S., formal analysis; T.S., Y.K., M.S., and T.H., validation; T.S. and Y.K., funding acquisition; T.S. and Y.K., project administration; T.S., T.H., M.S., and Y.K., supervision; T.S., visualization; T.S., writing-original draft; All authors reviewed the manuscript.

Corresponding authors

Correspondence to Teruhiko Suzuki or Yasuhiro Kazuki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Yamakawa, M., Sasaki, S. et al. Reconstitution of DNA fragments on HAC/MAC via the fragment-assembly system. Sci Rep (2026). https://doi.org/10.1038/s41598-026-40789-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-026-40789-9