Redefining separate or integrated food waste and wastewater streams for 29 large cities

redefining-separate-or-integrated-food-waste-and-wastewater-streams-for-29-large-cities
Redefining separate or integrated food waste and wastewater streams for 29 large cities

References

  1. World Urbanization Prospects: The 2018 Revision (United Nations, 2019).

  2. World Bank. What a Waste 2.0 (2018).

  3. Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat. Resour. Forum 44, 40–51 (2020).

    Article  Google Scholar 

  4. Yang, X., Gao, Q., Duan, H., Zhu, M. & Wang, S. GHG mitigation strategies on China’s diverse dish consumption are key to meet the Paris Agreement targets. Nat. Food 5, 365–377 (2024).

    Article  Google Scholar 

  5. United Nations. 2030 Agenda for Sustainable Development (2015).

  6. Wang, Y. et al. Methane emissions from landfills differentially underestimated worldwide. Nat. Sustain. 7, 496–507 (2024).

    Article  Google Scholar 

  7. U.S. Environmental Protection Agency. Quantifying Methane Emissions from Landfilled Food Waste (2023).

  8. Yang, N., Zhang, H., Chen, M., Shao, L.-M. & He, P.-J. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery. Waste Manag. 32, 2552–2560 (2012).

    Article  Google Scholar 

  9. Gu, Y., Li, Y., Yuan, F. & Yang, Q. Optimization and control strategies of aeration in WWTPs: a review. J. Clean. Prod. 418, 138008 (2023).

    Article  Google Scholar 

  10. Fagbohungbe, M. O. et al. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. 61, 236–249 (2017).

    Article  Google Scholar 

  11. Azarmanesh, R., Zarghami Qaretapeh, M., Hasani Zonoozi, M., Ghiasinejad, H. & Zhang, Y. Anaerobic co-digestion of sewage sludge with other organic wastes: a comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chem. Eng. J. Adv. 14, 100453 (2023).

    Article  Google Scholar 

  12. Iqbal, A., Zan, F., Siddiqui, M. A., Nizamuddin, S. & Chen, G. Integrated treatment of food waste with wastewater and sewage sludge: energy and carbon footprint analysis with economic implications. Sci. Total Environ. 825, 154052 (2022).

    Article  Google Scholar 

  13. Zan, F., Iqbal, A., Lu, X., Wu, X. & Chen, G. “Food waste-wastewater-energy/resource” nexus: integrating food waste management with wastewater treatment towards urban sustainability. Water Res. 211, 118089 (2022).

    Article  Google Scholar 

  14. Zan, F. Diversion of Food Waste into Sewer System: Characterization, Transformation and Implications (The Hong Kong University of Science and Technology, 2020).

  15. Iqbal, A. et al. Potential for co-disposal and treatment of food waste with sewage: a plant-wide steady-state model evaluation. Water Res. 184, 116175 (2020).

    Article  Google Scholar 

  16. Battistoni, P., Fatone, F., Passacantando, D. & Bolzonella, D. Application of food waste disposers and alternate cycles process in small-decentralized towns: a case study. Water Res. 41, 893–903 (2007).

    Article  Google Scholar 

  17. Iacovidou, E., Ohandja, D.-G., Gronow, J. & Voulvoulis, N. The household use of food waste disposal units as a waste management option: a review. Crit. Rev. Environ. Sci. Technol. 42, 1485–1508 (2012).

    Article  Google Scholar 

  18. Marashlian, N. & El-Fadel, M. The effect of food waste disposers on municipal waste and wastewater management. Waste Manag. Res. 23, 20–31 (2005).

    Article  Google Scholar 

  19. Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 1183–1195 (2019).

    Article  Google Scholar 

  20. Ehalt Macedo, H. et al. Distribution and characteristics of wastewater treatment plants within the global river network. Earth Syst. Sci. Data 14, 559–577 (2022).

    Article  Google Scholar 

  21. Bernstad, A. et al. Tank-connected food waste disposer systems—current status and potential improvements. Waste Manag. 33, 193–203 (2013).

    Article  Google Scholar 

  22. Maalouf, A. & El-Fadel, M. Effect of a food waste disposer policy on solid waste and wastewater management with economic implications of environmental externalities. Waste Manag. 69, 455–462 (2017).

    Article  Google Scholar 

  23. Zan, F. et al. Integrated food waste management with wastewater treatment in Hong Kong: transformation, energy balance and economic analysis. Water Res. 184, 116155 (2020).

    Article  Google Scholar 

  24. Henze, M., Gujer, W., Mino, T. & Van Loosedrecht, M. Activated sludge models ASM1, ASM2, ASM2d and ASM3. Water Intell. Online 5, 9781780402369 (2015).

    Article  Google Scholar 

  25. Emebu, S., Pecha, J. & Janáčová, D. Review on anaerobic digestion models: model classification & elaboration of process phenomena. >Renew. Sustain. Energy Rev. 160, 112288 (2022).

    Article  Google Scholar 

  26. Zan, F., Tang, W., Jiang, F. & Chen, G. Diversion of food waste into the sulfate-laden sewer: interaction and electron flow of sulfidogenesis and methanogenesis. Water Res. 202, 117437 (2021).

    Article  Google Scholar 

  27. Alvarado, V. I. et al. A standardized stoichiometric life-cycle inventory for enhanced specificity in environmental assessment of sewage treatment. Environ. Sci. Technol. 53, 5111–5123 (2019).

    Article  Google Scholar 

  28. Ekama, G. A. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model. Water Res. 43, 2101–2120 (2009).

    Article  Google Scholar 

  29. DSD. Sewage Services Operating Accounts 2018-19 https://www.dsd.gov.hk/uploads/page/SewageServicesChargingScheme/SSOA2019_20/SSOA%202019_2020_web_e.pdf (2020).

  30. DSD. DSD Sustainability Report 2018-19: Co-use•Re-use•Innovation https://www.dsd.gov.hk/Documents/SustainabilityReports/1819/en/index.html (2020).

  31. DSD. DSD Sustainability Report 2021-22: City, River, Communion https://www.dsd.gov.hk/EN/Files/publication/DSD-SR2021-22_Full_Report.pdf (2023).

  32. World Bank. State and Trends of Carbon Pricing 2024 (2024).

  33. Zan, F. & Hao, T. Sulfate in anaerobic co-digester accelerates methane production from food waste and waste activated sludge. Bioresour. Technol. 298, 122536 (2020).

    Article  Google Scholar 

  34. Dashti, A. et al. Review of higher heating value of municipal solid waste based on analysis and smart modelling. Renew. Sustain. Energy Rev. 151, 111591 (2021).

    Article  Google Scholar 

  35. Chen, D. & Christensen, T. H. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China. Waste Manag. Res. 28, 508–519 (2010).

    Article  Google Scholar 

  36. Quiet Garbage Disposals: Advanced Series—InSinkErator US https://insinkerator.emerson.com/en-us/insinkerator-products/garbage-disposals/advanced-series (2024).

  37. Obradović, D., Marenjak, S. & Šperac, M. Estimating maintenance costs of sewer system. Buildings 13, 500 (2023).

    Article  Google Scholar 

  38. He, Q. et al. Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment (CEPT): a case study of Huangshi. Chem. Speciat. Bioavailab. 28, 209–215 (2016).

    Article  Google Scholar 

  39. Woon, K. S. & Lo, I. M. C. An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator. Resour. Conserv. Recycl. 107, 104–114 (2016).

    Article  Google Scholar 

  40. Eggleston, H. S. et al. IPCC Guidelines for National Greenhouse Gas Inventories (IGES, 2006).

  41. Du, W.-J. et al. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat. Water 1, 166–175 (2023).

  42. Zhuang, H., Guan, J., Leu, S.-Y., Wang, Y. & Wang, H. Carbon footprint analysis of chemical enhanced primary treatment and sludge incineration for sewage treatment in Hong Kong. J. Clean. Prod. 272, 122630 (2020).

    Article  Google Scholar 

  43. Research Triangle Institute. Greenhouse Gas Emissions Estimation Methodologies for Biogenic Emissions from Selected Source Categories: Solid Waste Disposal Wastewater Treatment Ethanol Fermentation (2010).

  44. Chun, S.-K. Application of the stoichiometric methane potential obtained by waste elemental analysis to landfill gas modeling. J. Mater. Cycles Waste Manag. 20, 738–744 (2018).

    Article  Google Scholar 

  45. Zan, F., Liang, Z., Jiang, F., Dai, J. & Chen, G. Effects of food waste addition on biofilm formation and sulfide production in a gravity sewer. Water Res. 157, 74–82 (2019).

    Article  Google Scholar 

  46. Jiang, C.-K. et al. A new sulfur bioconversion process development for energy- and space-efficient secondary wastewater treatment. Chem. Eng. J. 473, 145249 (2023).

    Article  Google Scholar 

Download references