References
-
Matsushita, I. & Yanase, H. A novel thermophilic lysozyme from bacteriophage phiIN93. Biochem. Biophys. Res. Commun. 377, 89–92 (2008).
-
Naryshkina, T. et al. Thermus thermophilus bacteriophage phiYS40 genome and proteomic characterization of virions. J. Mol. Biol. 364, 667–677 (2006).
-
Tamakoshi, M. et al. Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile thermus thermophilus. Bacteriophage 1, 152–164 (2011).
-
Plotka, M. et al. Structure and function of the Ts2631 endolysin of Thermus scotoductus phage vB_Tsc2631 with unique N-terminal extension used for peptidoglycan binding. Sci. Rep. 9, 1261 (2019).
-
Liu, H., Kheirvari, M. & Tumban, E. Potential applications of thermophilic bacteriophages in one health. Int. J. Mol. Sci. 24 (9), 8222 (2023).
-
Plotka, M., Kapusta, M., Dorawa, S., Kaczorowska, A. K. & Kaczorowski, T. Ts2631 endolysin from the extremophilic Thermus scotoductus bacteriophage vB_Tsc2631 as an antimicrobial agent against gram-negative multidrug-resistant bacteria. Viruses 11 (7), 657 (2019).
-
Skowron, P. M. et al. Bacteriophages of thermophilic ‘Bacillus group’ Bacteria—A systematic Review, 2023 update. Int. J. Mol. Sci. 25 (6), 3125 (2024).
-
Plotka, M. et al. Novel highly thermostable endolysin from Thermus scotoductus MAT2119 bacteriophage Ph2119 with amino acid sequence similarity to eukaryotic peptidoglycan recognition proteins. Appl. Environ. Microbiol. 80, 886–895 (2014).
-
Plotka, M. et al. Biochemical characterization and validation of a catalytic site of a highly thermostable Ts2631 endolysin from the Thermus scotoductus phage vB_Tsc2631. PLoS One. 10, e0137374 (2015).
-
Li, Y. et al. Enzymatic property and stabilization mechanism of LysBT1, a novel polyextremotolerant endolysin with a C-terminal S-layer homology domain. Appl. Environ. Microbiol. 91, e0086725 (2025).
-
Szadkowska, M. et al. Molecular characterization of the PhiKo endolysin from Thermus thermophilus bacteriophage. Front. Microbiol. 14, 1303794 (2023).
-
Jasilionis, A. et al. AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase. Protein Sci. 32, e4585 (2023).
-
Ye, T. & Zhang, X. Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2. Appl. Microbiol. Biotechnol. 78, 635–641 (2008).
-
Oechslin, F. et al. Fermentation practices select for thermostable endolysins in phages. Mol. Biol. Evol. 41 (3), msae055 (2024).
-
Oliveira, H. et al. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol. 87, 4558–4570 (2013).
-
Das, R. & Gerstein, M. The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct. Integr. Genomics. 1, 76–88 (2000).
-
Thompson, M. J. & Eisenberg, D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290, 595–604 (1999).
-
Kumar, S., Tsai, C. J. & Nussinov, R. Factors enhancing protein thermostability. Protein Eng. 13, 179–191 (2000).
-
Sanchez-Ruiz, J. M. Protein kinetic stability. Biophys. Chem. 148, 1–15 (2010).
-
Hoopes, J. T., Heselpoth, R. D., Schwarz, F. P. & Nelson, D. C. Thermal characterization and interaction of the subunits from the multimeric bacteriophage endolysin PlyC. Biology (Basel) 12 (10), 1277 (2023).
-
Cheng, X., Zhang, X., Pflugrath, J. W. & Studier, F. W. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc. Natl. Acad. Sci. U S A. 91, 4034–4038 (1994).
-
Sun, Z., Liu, Q., Qu, G., Feng, Y. & Reetz, M. T. Utility of B-Factors in protein science: interpreting Rigidity, Flexibility, and internal motion and engineering thermostability. Chem. Rev. 119, 1626–1665 (2019).
-
Karshikoff, A., Nilsson, L. & Ladenstein, R. Rigidity versus flexibility: the dilemma of Understanding protein thermal stability. FEBS J. 282, 3899–3917 (2015).
-
Rahban, M. et al. Thermal stability enhancement: fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int. J. Biol. Macromol. 214, 642–654 (2022).
-
Zhou, X. X., Wang, Y. B., Pan, Y. J. & Li, W. F. Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids. 34, 25–33 (2008).
-
Pack, S. P. & Yoo, Y. J. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. J. Biotechnol. 111, 269–277 (2004).
-
Sokalingam, S., Raghunathan, G., Soundrarajan, N. & Lee, S. G. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PLoS One. 7, e40410 (2012).
-
Haney, P. J. et al. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. U S A. 96, 3578–3583 (1999).
-
Berezovsky, I. N., Chen, W. W., Choi, P. J. & Shakhnovich, E. I. Entropic stabilization of proteins and its proteomic consequences. PLoS Comput. Biol. 1, e47 (2005).
-
Russell, R. J., Ferguson, J. M., Hough, D. W., Danson, M. J. & Taylor, G. L. The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 A resolution. Biochemistry 36, 9983–9994 (1997).
-
Mattos, C. Protein-water interactions in a dynamic world. Trends Biochem. Sci. 27, 203–208 (2002).
-
Pham, T. L. et al. Relationship of thermostability and binding affinity in Metal-binding WW-Domain minireceptors. Chembiochem 25, e202300715 (2024).
-
Bechtel, T. J. & Weerapana, E. From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics 17 (6), 10.1002 (2017).
-
Freiberger, M. I. et al. Local energetic frustration conservation in protein families and superfamilies. Nat. Commun. 14, 8379 (2023).
-
Heselpoth, R. D., Owens, J. M. & Nelson, D. C. Quantitative analysis of the thermal stability of the gamma phage endolysin plyg: a biophysical and kinetic approach to assaying therapeutic potential. Virology 477, 125–132 (2015).
-
van Kempen,et al. Fast and accurate protein structure search with foldseek. Nat. Biotechnol. 42 (2), 243–246 (2023).
-
Sharif, S., Singh, M., Kim, S. J. & Schaefer, J. Staphylococcus aureus peptidoglycan tertiary structure from carbon-13 spin diffusion. J. Am. Chem. Soc. 131, 7023–7030 (2009).
-
Gumbart, J. C., Beeby, M., Jensen, G. J. & Roux, B. Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLoS Comput. Biol. 10, e1003475 (2014).
-
Ban, X. et al. Evolutionary stability of salt bridges hints its contribution to stability of proteins. Comput. Struct. Biotechnol. J. 17, 895–903 (2019).
-
Takano, K., Tsuchimori, K., Yamagata, Y. & Yutani, K. Contribution of salt bridges near the surface of a protein to the conformational stability. Biochemistry 39, 12375–12381 (2000).
-
Kaira, G. S., Usharani, D. & Kapoor, M. Salt bridges are pivotal for the kinetic stability of GH26 endo-mannanase (ManB-1601). Int. J. Biol. Macromol. 133, 1236–1241 (2019).
-
Meng, E. C. et al. UCSF chimerax: tools for structure Building and analysis. Protein Sci. 32, e4792 (2023).
-
Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview version 5: A multiplatform software for multiple sequence Alignment, molecular phylogenetic Analyses, and tree reconciliation. Methods Mol. Biol. 2231, 241–260 (2021).
-
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
-
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
-
Stossi, F. & Singh, P. K. Basic image analysis and manipulation in imageJ/Fiji. Curr. Protoc. 3, e849 (2023).
