Residue-level determinants of the thermal stability of the extremophilic Ts2631 endolysin

residue-level-determinants-of-the-thermal-stability-of-the-extremophilic-ts2631-endolysin
Residue-level determinants of the thermal stability of the extremophilic Ts2631 endolysin

References

  1. Matsushita, I. & Yanase, H. A novel thermophilic lysozyme from bacteriophage phiIN93. Biochem. Biophys. Res. Commun. 377, 89–92 (2008).

    Google Scholar 

  2. Naryshkina, T. et al. Thermus thermophilus bacteriophage phiYS40 genome and proteomic characterization of virions. J. Mol. Biol. 364, 667–677 (2006).

    Google Scholar 

  3. Tamakoshi, M. et al. Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile thermus thermophilus. Bacteriophage 1, 152–164 (2011).

    Google Scholar 

  4. Plotka, M. et al. Structure and function of the Ts2631 endolysin of Thermus scotoductus phage vB_Tsc2631 with unique N-terminal extension used for peptidoglycan binding. Sci. Rep. 9, 1261 (2019).

    Google Scholar 

  5. Liu, H., Kheirvari, M. & Tumban, E. Potential applications of thermophilic bacteriophages in one health. Int. J. Mol. Sci. 24 (9), 8222 (2023).

  6. Plotka, M., Kapusta, M., Dorawa, S., Kaczorowska, A. K. & Kaczorowski, T. Ts2631 endolysin from the extremophilic Thermus scotoductus bacteriophage vB_Tsc2631 as an antimicrobial agent against gram-negative multidrug-resistant bacteria. Viruses 11 (7), 657 (2019).

  7. Skowron, P. M. et al. Bacteriophages of thermophilic ‘Bacillus group’ Bacteria—A systematic Review, 2023 update. Int. J. Mol. Sci. 25 (6), 3125 (2024).

    Google Scholar 

  8. Plotka, M. et al. Novel highly thermostable endolysin from Thermus scotoductus MAT2119 bacteriophage Ph2119 with amino acid sequence similarity to eukaryotic peptidoglycan recognition proteins. Appl. Environ. Microbiol. 80, 886–895 (2014).

    Google Scholar 

  9. Plotka, M. et al. Biochemical characterization and validation of a catalytic site of a highly thermostable Ts2631 endolysin from the Thermus scotoductus phage vB_Tsc2631. PLoS One. 10, e0137374 (2015).

    Google Scholar 

  10. Li, Y. et al. Enzymatic property and stabilization mechanism of LysBT1, a novel polyextremotolerant endolysin with a C-terminal S-layer homology domain. Appl. Environ. Microbiol. 91, e0086725 (2025).

    Google Scholar 

  11. Szadkowska, M. et al. Molecular characterization of the PhiKo endolysin from Thermus thermophilus bacteriophage. Front. Microbiol. 14, 1303794 (2023).

    Google Scholar 

  12. Jasilionis, A. et al. AmiP from hyperthermophilic Thermus parvatiensis prophage is a thermoactive and ultrathermostable peptidoglycan lytic amidase. Protein Sci. 32, e4585 (2023).

    Google Scholar 

  13. Ye, T. & Zhang, X. Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2. Appl. Microbiol. Biotechnol. 78, 635–641 (2008).

    Google Scholar 

  14. Oechslin, F. et al. Fermentation practices select for thermostable endolysins in phages. Mol. Biol. Evol. 41 (3), msae055 (2024).

  15. Oliveira, H. et al. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol. 87, 4558–4570 (2013).

    Google Scholar 

  16. Das, R. & Gerstein, M. The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct. Integr. Genomics. 1, 76–88 (2000).

    Google Scholar 

  17. Thompson, M. J. & Eisenberg, D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290, 595–604 (1999).

    Google Scholar 

  18. Kumar, S., Tsai, C. J. & Nussinov, R. Factors enhancing protein thermostability. Protein Eng. 13, 179–191 (2000).

    Google Scholar 

  19. Sanchez-Ruiz, J. M. Protein kinetic stability. Biophys. Chem. 148, 1–15 (2010).

    Google Scholar 

  20. Hoopes, J. T., Heselpoth, R. D., Schwarz, F. P. & Nelson, D. C. Thermal characterization and interaction of the subunits from the multimeric bacteriophage endolysin PlyC. Biology (Basel) 12 (10), 1277 (2023).

  21. Cheng, X., Zhang, X., Pflugrath, J. W. & Studier, F. W. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc. Natl. Acad. Sci. U S A. 91, 4034–4038 (1994).

    Google Scholar 

  22. Sun, Z., Liu, Q., Qu, G., Feng, Y. & Reetz, M. T. Utility of B-Factors in protein science: interpreting Rigidity, Flexibility, and internal motion and engineering thermostability. Chem. Rev. 119, 1626–1665 (2019).

    Google Scholar 

  23. Karshikoff, A., Nilsson, L. & Ladenstein, R. Rigidity versus flexibility: the dilemma of Understanding protein thermal stability. FEBS J. 282, 3899–3917 (2015).

    Google Scholar 

  24. Rahban, M. et al. Thermal stability enhancement: fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int. J. Biol. Macromol. 214, 642–654 (2022).

    Google Scholar 

  25. Zhou, X. X., Wang, Y. B., Pan, Y. J. & Li, W. F. Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids. 34, 25–33 (2008).

    Google Scholar 

  26. Pack, S. P. & Yoo, Y. J. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. J. Biotechnol. 111, 269–277 (2004).

    Google Scholar 

  27. Sokalingam, S., Raghunathan, G., Soundrarajan, N. & Lee, S. G. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PLoS One. 7, e40410 (2012).

    Google Scholar 

  28. Haney, P. J. et al. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. U S A. 96, 3578–3583 (1999).

    Google Scholar 

  29. Berezovsky, I. N., Chen, W. W., Choi, P. J. & Shakhnovich, E. I. Entropic stabilization of proteins and its proteomic consequences. PLoS Comput. Biol. 1, e47 (2005).

    Google Scholar 

  30. Russell, R. J., Ferguson, J. M., Hough, D. W., Danson, M. J. & Taylor, G. L. The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 A resolution. Biochemistry 36, 9983–9994 (1997).

    Google Scholar 

  31. Mattos, C. Protein-water interactions in a dynamic world. Trends Biochem. Sci. 27, 203–208 (2002).

    Google Scholar 

  32. Pham, T. L. et al. Relationship of thermostability and binding affinity in Metal-binding WW-Domain minireceptors. Chembiochem 25, e202300715 (2024).

    Google Scholar 

  33. Bechtel, T. J. & Weerapana, E. From structure to redox: the diverse functional roles of disulfides and implications in disease. Proteomics 17 (6), 10.1002 (2017).

  34. Freiberger, M. I. et al. Local energetic frustration conservation in protein families and superfamilies. Nat. Commun. 14, 8379 (2023).

    Google Scholar 

  35. Heselpoth, R. D., Owens, J. M. & Nelson, D. C. Quantitative analysis of the thermal stability of the gamma phage endolysin plyg: a biophysical and kinetic approach to assaying therapeutic potential. Virology 477, 125–132 (2015).

    Google Scholar 

  36. van Kempen,et al. Fast and accurate protein structure search with foldseek. Nat. Biotechnol. 42 (2), 243–246 (2023).

  37. Sharif, S., Singh, M., Kim, S. J. & Schaefer, J. Staphylococcus aureus peptidoglycan tertiary structure from carbon-13 spin diffusion. J. Am. Chem. Soc. 131, 7023–7030 (2009).

    Google Scholar 

  38. Gumbart, J. C., Beeby, M., Jensen, G. J. & Roux, B. Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLoS Comput. Biol. 10, e1003475 (2014).

    Google Scholar 

  39. Ban, X. et al. Evolutionary stability of salt bridges hints its contribution to stability of proteins. Comput. Struct. Biotechnol. J. 17, 895–903 (2019).

    Google Scholar 

  40. Takano, K., Tsuchimori, K., Yamagata, Y. & Yutani, K. Contribution of salt bridges near the surface of a protein to the conformational stability. Biochemistry 39, 12375–12381 (2000).

    Google Scholar 

  41. Kaira, G. S., Usharani, D. & Kapoor, M. Salt bridges are pivotal for the kinetic stability of GH26 endo-mannanase (ManB-1601). Int. J. Biol. Macromol. 133, 1236–1241 (2019).

    Google Scholar 

  42. Meng, E. C. et al. UCSF chimerax: tools for structure Building and analysis. Protein Sci. 32, e4792 (2023).

    Google Scholar 

  43. Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview version 5: A multiplatform software for multiple sequence Alignment, molecular phylogenetic Analyses, and tree reconciliation. Methods Mol. Biol. 2231, 241–260 (2021).

    Google Scholar 

  44. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Google Scholar 

  45. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Google Scholar 

  46. Stossi, F. & Singh, P. K. Basic image analysis and manipulation in imageJ/Fiji. Curr. Protoc. 3, e849 (2023).

    Google Scholar 

Download references