Rewiring the proteome of the Euscelidius variegatus holobiont in response to Flavescence dorée phytoplasma

rewiring-the-proteome-of-the-euscelidius-variegatus-holobiont-in-response-to-flavescence-doree-phytoplasma
Rewiring the proteome of the Euscelidius variegatus holobiont in response to Flavescence dorée phytoplasma

References

  1. Lee, I.-M., Davis, R. E. & Gundersen-Rindal, D. E. Phytoplasma: Phytopathogenic mollicutes. Annu. Rev. Microbiol. 54, 221–255 (2000).

    Google Scholar 

  2. Nougadère, A. et al. Grapevine flavescence dorée phytoplasma Pest Report to support the ranking of EU candidate priority pests. EFSA Support. Public. 22, 9567E (2025).

    Google Scholar 

  3. Malembic-Maher, S. et al. When a Palearctic bacterium meets a Nearctic insect vector: Genetic and ecological insights into the emergence of the grapevine Flavescence dorée epidemics in Europe. PLoS Pathog. 16, e1007967 (2020).

    Google Scholar 

  4. Caudwell, A., Kuszala, C., Larrue, J. & Bachelier, J. Transmission de la Flavescence dorée de la fève à la fève par des cicadelles des genres Euscelis et Euscelidius. Ann. Phytopathol. 1572, 181–189 (1972).

    Google Scholar 

  5. Gurung, K., Wertheim, B. & Falcao Salles, J. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).

    Google Scholar 

  6. Gupta, A. & Nair, S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11, 1357 (2020).

    Google Scholar 

  7. Cooper, W. R. et al. Bacterial endosymbionts identified from leafhopper (Hemiptera: Cicadellidae) vectors of phytoplasmas. Environ. Entomol. 52, 243–253 (2023).

    Google Scholar 

  8. Wilkinson, T. L. & Ishikawa, H. On the functional significance of symbiotic microorganisms in the Homoptera: A comparative study of Acyrthosiphon pisum and Nilaparvata lugens. Physiol. Entomol. 26, 86–93 (2001).

    Google Scholar 

  9. Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).

    Google Scholar 

  10. Kikuchi, Y. Endosymbiotic bacteria in insects: Their diversity and culturability. Microbes Environ. 24, 195–204 (2009).

    Google Scholar 

  11. Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).

    Google Scholar 

  12. Martinson, V. G. et al. Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proc. Natl. Acad. Sci. 117, 31979–31986 (2020).

    Google Scholar 

  13. Marasco, R. et al. Sorlinia euscelidii gen. nov., sp. nov., a novel acetic acid bacterium isolated from the leafhopper Euscelidius variegatus (Hemiptera: Cicadellidae). Int J Syst Evol Microbiol 74, 006544 (2024).

    Google Scholar 

  14. Abbà, S. et al. Genome sequence, prevalence and quantification of the first iflavirus identified in a phytoplasma insect vector. Arch. Virol. 162, 799 (2017).

    Google Scholar 

  15. Ottati, S. et al. Biological characterization of Euscelidius variegatus iflavirus 1. J. Invertebr. Pathol. 173, 107370 (2020).

    Google Scholar 

  16. Galetto, L. et al. Two phytoplasmas elicit different responses in the insect vector Euscelidius variegatus Kirschbaum. Infect. Immun. 86, 10–128 (2018).

    Google Scholar 

  17. Weil, T. et al. Linking omics and ecology to dissect interactions between the apple proliferation phytoplasma and its psyllid vector Cacopsylla melanoneura. Insect Biochem. Mol. Biol. 127, 103474 (2020).

    Google Scholar 

  18. Vijay, S., Rawat, M. & Sharma, A. Mass spectrometry based proteomic analysis of salivary glands of urban malaria vector Anopheles stephensi. Biomed. Res. Int. 2014, 1–12 (2014).

    Google Scholar 

  19. Ramos, L. F. C. et al. Interspecies isobaric labeling-based quantitative proteomics reveals protein changes in the ovary of Aedes aegypti coinfected With ZIKV and Wolbachia. Front. Cell Infect. Microbiol. 12, 900608 (2022).

    Google Scholar 

  20. Liu, B., Qin, F., Liu, W. & Wang, X. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus. Sci. Rep. 6, 27216 (2016).

    Google Scholar 

  21. Zhao, J. et al. Comparative proteomic analysis provides new insight into differential transmission of two begomoviruses by a whitefly. Virol. J. 16, 32 (2019).

    Google Scholar 

  22. Badillo-Vargas, I. E. et al. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to Tomato Spotted Wilt Virus Infection. J. Virol. 86, 8793–8809 (2012).

    Google Scholar 

  23. Tamborindeguy, C. et al. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus. PLoS ONE 8, e71620 (2013).

    Google Scholar 

  24. Kruse, A. et al. Combining ’omics and microscopy to visualize interactions between the Asian citrus psyllid vector and the Huanglongbing pathogen Candidatus Liberibacter asiaticus in the insect gut. PLoS ONE 12, e0179531 (2017).

    Google Scholar 

  25. Zhao, J. et al. Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota. NPJ. Biofilms. Microbiomes 9, 4 (2023).

    Google Scholar 

  26. Watanabe, K. & Sato, M. Gut colonization by an ice nucleation active bacterium, Erwinia(Pantoea)ananasReduces the cold hardiness of mulberry pyralid larvae. Cryobiology 38, 281–289 (1999).

    Google Scholar 

  27. Gitaitis, R. D., Walcott, R. R., Wells, M. L., Perez, J. C. D. & Sanders, F. H. Transmission of Pantoea ananatis, causal agent of center rot of onion, by tobacco thrips Frankliniella fusca. Plant Dis. 87, 675–678 (2003).

    Google Scholar 

  28. Krawczyk, K., Foryś, J., Nakonieczny, M., Tarnawska, M. & Bereś, P. K. Transmission of Pantoea ananatis, the causal agent of leaf spot disease of maize (Zea mays), by western corn rootworm (Diabrotica virgifera virgifera LeConte). Crop Prot. 141, 105431 (2021).

    Google Scholar 

  29. Bing, X.-L. et al. Characterization of Pantoea ananatis from rice planthoppers reveals a clade of rice-associated P. ananatis undergoing genome reduction. Microb. Genom. 8, 000907 (2022).

    Google Scholar 

  30. Blakeley-Ruiz, J. A. & Kleiner, M. Considerations for constructing a protein sequence database for metaproteomics. Comput. Struct. Biotechnol. J. 20, 937–952 (2022).

    Google Scholar 

  31. Vallino, M. et al. Bacteriophage-host association in the phytoplasma insect vector Euscelidius variegatus. Pathogens 10, 612 (2021).

    Google Scholar 

  32. Vasquez, Y. M., Li, Z., Xue, A. Z. & Bennett, G. M. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol. Ecol. Resour. 24, 13919 (2024).

    Google Scholar 

  33. Kwak, Y., Argandona, J. A., Degnan, P. H. & Hansen, A. K. Chromosomal-level assembly of Bactericera cockerelli reveals rampant gene family expansions impacting genome structure, function and insect-microbe-plant-interactions. Mol. Ecol. Resour. 23, 233–252 (2023).

    Google Scholar 

  34. Li, Z. et al. The genomic basis of evolutionary novelties in a leafhopper. Mol. Biol. Evol. 39, msac184 (2022).

    Google Scholar 

  35. Heck, M. & Neely, B. A. Proteomics in non-model organisms: A new analytical frontier. J. Proteome Res. 19, 3595–3606 (2020).

    Google Scholar 

  36. Armengaud, J. et al. Non-model organisms, a species endangered by proteogenomics. J. Proteomics 105, 5–18 (2014).

    Google Scholar 

  37. Miura, N., Tabata, T., Ishihama, Y. & Okuda, S. Phylogenetic tree-based amino acid sequence generation for proteomics data analysis of unknown species. Comput. Struct. Biotechnol. J. 27, 2313–2322 (2025).

    Google Scholar 

  38. Canuto, F. et al. A knockdown gene approach identifies an insect vector membrane protein with leucin-rich repeats as one of the receptors for the VmpA adhesin of flavescence dorée phytoplasma. Front. Cell Infect. Microbiol. 13, 1289100 (2023).

    Google Scholar 

  39. Trivellone, V. et al. Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species. J. Appl. Microbiol. 127, 1801–1813 (2019).

    Google Scholar 

  40. Galetto, L. et al. Natterin-like and legumain insect gut proteins promote the multiplication of a vector-borne bacterial plant pathogen. Microbiol. Res. 291, 127984 (2025).

    Google Scholar 

  41. Bressan, A., Girolami, V. & Boudon-Padieu, E. Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to Flavescence dorée phytoplasma. Entomol Exp Appl 115, 283–290 (2005).

    Google Scholar 

  42. Du, X. & Thiem, S. M. Responses of insect cells to baculovirus infection: Protein synthesis shutdown and apoptosis. J. Virol. 71, 7866–7872 (1997).

    Google Scholar 

  43. Galetto, L. et al. Silencing of ATP synthase β reduces phytoplasma multiplication in a leafhopper vector. J. Insect. Physiol. 128, 104176 (2021).

    Google Scholar 

  44. Galetto, L. et al. The major antigenic membrane protein of “Candidatus phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS ONE 6, e22571 (2011).

    Google Scholar 

  45. Rossi, M. et al. Application of laser microdissection to study phytoplasma site-specific gene expression in the model plant Arabidopsis thaliana. Microbiol. Res. 217, 60–68 (2018).

    Google Scholar 

  46. Inaba, J., Kim, B. M., Zhao, Y., Jansen, A. M. & Wei, W. The endoplasmic reticulum is a key battleground between phytoplasma aggression and host plant defense. Cells 12, 2110 (2023).

    Google Scholar 

  47. Suzuki, S. et al. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc. Natl. Acad. Sci. 103, 4252–4257 (2006).

    Google Scholar 

  48. Martini, X., Hoffmann, M., Coy, M. R., Stelinski, L. L. & Pelz-Stelinski, K. S. Infection of an insect vector with a bacterial plant pathogen increases its propensity for dispersal. PLoS ONE 10, e0129373 (2015).

    Google Scholar 

  49. Roosien, B. K. et al. Conditional vector preference aids the spread of plant pathogens: Results from a model. Environ. Entomol. 42, 1299–1308 (2013).

    Google Scholar 

  50. Prasad, S. S. et al. Correction: Prasad et al. Patterns of variation in the usage of fatty acid chains among classes of ester and ether neutral lipids and phospholipids in the Queensland Fruit Fly. Insects 15, 538 (2024).

    Google Scholar 

  51. Burmester, T. Evolution and function of the insect hexamerins. Eur. J. Entomol. 96, 213–215 (1999).

    Google Scholar 

  52. Eliautout, R. et al. Immune response and survival of Circulifer haematoceps to Spiroplasma citri infection requires expression of the gene hexamerin. Dev. Comp. Immunol. 54, 7–19 (2016).

    Google Scholar 

  53. Mao, M., Yang, X. & Bennett, G. M. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc. Natl. Acad. Sci. 115, E11691 (2018).

    Google Scholar 

  54. Purcell, A. H. & Suslow, K. G. Pathogenicity and effects on transmission of a mycoplasmalike organism of a transovarially infective bacterium on the leafhopper Euscelidius variegatus (Homoptera: Cicadellidae). J. Invertebr. Pathol. 50, 285–290 (1987).

    Google Scholar 

  55. Kang, S., Shields, A. R., Jupatanakul, N. & Dimopoulos, G. Suppressing Dengue-2 infection by chemical inhibition of Aedes aegypti host factors. PLoS Negl. Trop. Dis. 8, e3084 (2014).

    Google Scholar 

  56. Dong, S., Kang, S. & Dimopoulos, G. Identification of anti-flaviviral drugs with mosquitocidal and anti-Zika virus activity in Aedes aegypti. PLoS Negl. Trop. Dis. 13, e0007681 (2019).

    Google Scholar 

  57. Rossi, M. et al. Genetic diversity of flavescence dorée phytoplasmas at the vineyard scale. Appl. Environ. Microbiol. 85, e03123 (2019).

    Google Scholar 

  58. Rossi, M. et al. Competition among flavescence dorée phytoplasma strains in the experimental insect vector Euscelidius variegatus. Insects 14, 575 (2023).

    Google Scholar 

  59. Marzachì, C., Veratti, F. & Bosco, D. Direct PCR detection of phytoplasmas in experimentally infected insects. Ann. Appl. Biol. 133, 45–54 (1998).

    Google Scholar 

  60. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Google Scholar 

  61. Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Google Scholar 

  62. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).

    Google Scholar 

  63. Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).

    Google Scholar 

  64. Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Google Scholar 

  65. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).

    Google Scholar 

Download references