Safety and biologic activity of a bispecific T cell receptor targeting HIV Gag in males living with HIV: a first-in-human trial

safety-and-biologic-activity-of-a-bispecific-t-cell-receptor-targeting-hiv-gag-in-males-living-with-hiv:-a-first-in-human-trial
Safety and biologic activity of a bispecific T cell receptor targeting HIV Gag in males living with HIV: a first-in-human trial

Data availability

Key elements of the IMC-M113V-103 study protocol are available at the European Union Clinical Trials Register (EudraCT 2021-002008-11). A redacted version of the IMC-M113V-103 study protocol is included in the Supplementary Information file and available at CTIS – Clinical Trials in the European Union (https://euclinicaltrials.eu). Cell-associated HIV gag RNA sequences generated in this study have been deposited in the BioSample database under BioProject PRJNA1372654 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1372654; https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP650654&o=acc_s%3Aa). Source data are provided with this paper.

References

  1. Armani-Tourret, M. et al. Immune targeting of HIV-1 reservoir cells: a path to elimination strategies and cure. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-024-01010-8 (2024).

  2. Banga, R. & Perreau, M. The multifaceted nature of HIV tissue reservoirs. Curr. Opin. HIV AIDS 19, 116–123 (2024).

    Google Scholar 

  3. Hütter, G. et al. Long-term control of HIV by CCR5 delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).

    Google Scholar 

  4. Allers, K. et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 117, 2791–2799 (2011).

    Google Scholar 

  5. Gupta, R. K. et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 568, 244–248 (2019).

    Google Scholar 

  6. Jensen, B.-E. O. et al. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat. Med. 29, 583–587 (2023).

    Google Scholar 

  7. Hsu, J. et al. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell 186, 1115–1126.e8 (2023).

    Google Scholar 

  8. Deeks, S. G. et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nat. Med. 27, 2085–2098 (2021).

    Google Scholar 

  9. Woldemeskel, B. A., Kwaa, A. K. & Blankson, J. N. Viral reservoirs in elite controllers of HIV-1 infection: Implications for HIV cure strategies. EBioMedicine 62, 103118 (2020).

    Google Scholar 

  10. Bailón, L. et al. Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection: a randomized, placebo-controlled phase 1 trial. Nat. Med. 28, 2611–2621 (2022).

    Google Scholar 

  11. Kopycinski, J. et al. Therapeutic vaccination following early antiretroviral therapy elicits highly functional T cell responses against conserved HIV-1 regions. Sci. Rep. 13, 17155 (2023).

    Google Scholar 

  12. Lee, M. J., Fidler, S. & Frater, J. Immunotherapeutic approaches to HIV cure and remission. Curr. Opin. Infect. Dis. 35, 31–41 (2022).

    Google Scholar 

  13. Mendoza, P. et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561, 479–484 (2018).

    Google Scholar 

  14. Gunst, J. D. et al. Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial. Nat. Med. 28, 2424–2435 (2022).

    Google Scholar 

  15. Gunst, J. D. et al. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat. Med. 29, 2547–2558 (2023).

    Google Scholar 

  16. Gaebler, C. et al. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 606, 368–374 (2022).

    Google Scholar 

  17. Anthony-Gonda, K. et al. In vivo killing of primary HIV-infected cells by peripheral-injected early memory–enriched anti-HIV duoCAR T cells. JCI Insight 7, e161698 (2022).

    Google Scholar 

  18. Dashti, A. et al. SMAC mimetic plus triple-combination bispecific HIVxCD3 retargeting molecules in SHIV.C.CH505-infected, antiretroviral therapy-suppressed rhesus macaques. J. Virol. https://doi.org/10.1128/jvi.00793-20 (2020).

  19. Dash, P. K. et al. CRISPR editing of CCR5 and HIV-1 facilitates viral elimination in antiretroviral drug-suppressed virus-infected humanized mice. Proc. Natl. Acad. Sci. USA 120, e2217887120 (2023).

    Google Scholar 

  20. Tebas, P. et al. CCR5-edited CD4 T cells augment HIV-specific immunity to enable post rebound control of HIV replication. J. Clin. Investig. 131, e144486 (2021).

    Google Scholar 

  21. Lewin, S. R. et al. Multi-stakeholder consensus on a target product profile for an HIV cure. Lancet HIV 8, e42–e50 (2020).

    Google Scholar 

  22. Liddy, N. et al. Monoclonal TCR-redirected tumor cell killing. Nat. Med. 18, 980–987 (2012).

    Google Scholar 

  23. Wallace, Z. et al. Immune mobilising T cell receptors redirect polyclonal CD8+ T cells in chronic HIV infection to form immunological synapses. Sci. Rep. 12, 18366 (2022).

    Google Scholar 

  24. Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. New Engl. J. Med. 385, 1196–1206 (2021).

    Google Scholar 

  25. Fergusson, J. R. et al. Immune-mobilizing monoclonal T cell receptors mediate specific and rapid elimination of hepatitis B-infected cells. Hepatology 72, 1528–1540 (2020).

    Google Scholar 

  26. Wallace, Z., Singh, P. K. & Dorrell, L. Combination strategies to durably suppress HIV-1: soluble T cell receptors. J. Virus Erad. 8, 100082 (2022).

    Google Scholar 

  27. Yang, H. et al. Elimination of latently HIV-infected cells from antiretroviral therapy-suppressed subjects by engineered immune-mobilizing T-cell receptors. Mol. Ther. 24, 1913–1925 (2016).

    Google Scholar 

  28. Wu, G. et al. Gag p24 is a marker of human immunodeficiency virus expression in tissues and correlates with immune response. J. Infect. Dis. 224, 1593–1598 (2021).

    Google Scholar 

  29. Yukl, S. A. et al. HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci. Transl. Med. 10, eaap9927 (2018).

    Google Scholar 

  30. Cohen, G. B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    Google Scholar 

  31. Banga, R. et al. PD-1+ and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat. Med. 22, 754–761 (2016).

    Google Scholar 

  32. Peluso, M. J. et al. Differential decay of intact and defective proviral DNA in HIV-1-infected individuals on suppressive antiretroviral therapy. JCI Insight 5, e132997 (2020).

    Google Scholar 

  33. Hemelaar, J. et al. Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis. Lancet Infect. Dis. 19, 143–155 (2019).

    Google Scholar 

  34. Purbhoo, M. A. et al. Quantifying and imaging NY-ESO-1/LAGE-1-derived epitopes on tumor cells using high affinity T cell receptors. J Immunol 176, 7308–7316 (2006).

    Google Scholar 

  35. Harper, J. et al. An approved in vitro approach to preclinical safety and efficacy evaluation of engineered T cell receptor anti-CD3 bispecific (ImmTAC) molecules. PLoS One 13, e0205491 (2018).

    Google Scholar 

  36. Maiers, M., Gragert, L. & Klitz, W. High-resolution HLA alleles and haplotypes in the United States population. Hum. Immunol. 68, 779–788 (2007).

    Google Scholar 

  37. Banjoko, A. W. et al. High resolution class I HLA-A, -B, and -C diversity in Eastern and Southern African populations. Sci. Rep. 15, 23667 (2025).

    Google Scholar 

  38. Simon, R. et al. Accelerated titration designs for phase I clinical trials in oncology. J. Natl. Cancer Inst. 89, 1138–1147 (1997).

    Google Scholar 

  39. Middleton, M. R. et al. Tebentafusp, A TCR/Anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res. Off. J. Am. Assoc. Cancer Res. 26, 5869–5878 (2020).

    Google Scholar 

  40. Carvajal, R. D. et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: a phase 2 trial. Nat. Med. https://doi.org/10.1038/s41591-022-02015-7 (2022).

  41. Leclercq, G. et al. Dissecting the mechanism of cytokine release induced by T-cell engagers highlights the contribution of neutrophils. OncoImmunology 11, 2039432 (2022).

    Google Scholar 

  42. West, N. R. Coordination of immune-stroma crosstalk by IL-6 family cytokines. Front. Immunol. 10, 1093 (2019).

    Google Scholar 

  43. Abdel-Mohsen, M. et al. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat. Med. 26, 1339–1350 (2020).

    Google Scholar 

  44. Varela-Rohena, A. et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat. Med. 14, 1390–1395 (2008).

    Google Scholar 

  45. Kearney, M. F. et al. Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog. 10, e1004010 (2014).

    Google Scholar 

  46. Jain, T. & Litzow, M. R. Management of toxicities associated with novel immunotherapy agents in acute lymphoblastic leukemia. Ther. Adv. Hematol. 11, 2040620719899897 (2020).

    Google Scholar 

  47. Neelapu, S. S. Managing the toxicities of CAR T-cell therapy. Hematol. Oncol. 37, 48–52 (2019).

    Google Scholar 

  48. Saber, H., Valle, P. D., Ricks, T. K. & Leighton, J. K. An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection. Regul. Toxicol. Pharm. 90, 144–152 (2017).

    Google Scholar 

  49. Carvajal, R. D. et al. Phase I study of safety, tolerability, and efficacy of tebentafusp using a step-up dosing regimen and expansion in patients with metastatic uveal melanoma. J. Clin. Oncol. 40, 1939–1948 (2022).

    Google Scholar 

  50. Topp, M. S. et al. Targeted therapy with the T-Cell–engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. 29, 2493–2498 (2011).

    Google Scholar 

  51. Patel, H. & Dubé, K. To prescreen or not to prescreen for broadly neutralizing antibody sensitivity in HIV cure-related trials. J. Virus Erad. 9, 100339 (2023).

    Google Scholar 

  52. Pardons, M. et al. Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathog. 15, e1007619 (2019).

    Google Scholar 

  53. Li, J. Z. et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS 30, 343–353 (2016).

    Google Scholar 

  54. Pasternak, A. O. et al. Cell-associated HIV-1 RNA predicts viral rebound and disease progression after discontinuation of temporary early ART. JCI Insight 5, e134196 (2020).

    Google Scholar 

  55. Scheerder, M.-A. D. et al. In-depth analysis of the HIV reservoir confirms effectiveness and safety of dolutegravir/lamivudine in a phase 4 randomized controlled switch trial (RUMBA). J. Infect. Dis. https://doi.org/10.1093/infdis/jiae405 (2024).

  56. Martin, H. A. et al. New assay reveals vast excess of defective over intact HIV-1 transcripts in antiretroviral therapy-suppressed individuals. J. Virol. 96, e01605-22 (2022).

    Google Scholar 

  57. Dubé, M. et al. Spontaneous HIV expression during suppressive ART is associated with the magnitude and function of HIV-specific CD4+ and CD8+ T cells. Cell Host Microbe 31, 1507–1522.e5 (2023).

    Google Scholar 

  58. Imamichi, H. et al. Defective HIV-1 proviruses produce viral proteins. Proc. Natl. Acad. Sci. USA 117, 3704–3710 (2020).

    Google Scholar 

  59. Pollack, R. A. et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21, 494–506.e4 (2017).

    Google Scholar 

  60. Gust, J. et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7, 1404–1419 (2017).

    Google Scholar 

  61. Kim, Y., Anderson, J. L. & Lewin, S. R. Getting the “Kill” into “Shock and Kill”: strategies to eliminate latent HIV. Cell Host Microbe 23, 14–26 (2018).

    Google Scholar 

  62. Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genom. Hum. Genet. 9, 403–433 (2008).

    Google Scholar 

  63. Paterson, R. L. et al. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 121, e2318003121 (2024).

    Google Scholar 

  64. Karuppiah, V. et al. Broadening alloselectivity of T cell receptors by structure guided engineering. Sci. Rep. 14, 26851 (2024).

    Google Scholar 

  65. Murugesan, G. et al. Viral sequence determines HLA-E-restricted T cell recognition of hepatitis B surface antigen. Nat. Commun. 15, 10126 (2024).

    Google Scholar 

  66. Poole, A. et al. Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen. Nat. Commun. 13, 5333 (2022).

    Google Scholar 

  67. Yang, H. et al. Improved quantification of HIV-1-infected CD4+ T cells using an optimised method of intracellular HIV-1 gag p24 antigen detection. J. Immunol. Methods 391, 174–178 (2013).

    Google Scholar 

  68. Cameron, B. J. et al. Identification of a titin-derived HLA-A1–presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. Sci. Transl. Med. 5, 197ra103–197ra103 (2013).

    Google Scholar 

  69. Gerven, J. & Bonelli, M. Commentary on the EMA Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. Br. J. Clin. Pharmacol. 84, 1401–1409 (2018).

    Google Scholar 

  70. European Medicines Agency. Guideline on Strategies to Identify and Mitigate Risks for First-in-Human and Early Clinical Trials with Investigational Medicinal Products. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-strategies-identify-mitigate-risks-first-human-early-clinical-trials-investigational_en.pdf (2017).

  71. Guo, W., Wang, S.-J., Yang, S., Lynn, H. & Ji, Y. A Bayesian interval dose-finding design addressing Ockham’s razor: mTPI-2. Contemp. Clin. Trials 58, 23–33 (2017).

    Google Scholar 

  72. Géraud, A. et al. Reactions and adverse events induced by T-cell engagers as anti-cancer immunotherapies, a comprehensive review. Eur. J. Cancer https://doi.org/10.1016/j.ejca.2024.114075 (2024).

  73. Ho, Y.-C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).

    Google Scholar 

  74. Massanella, M., Gianella, S., Lada, S., Richman, D. & Strain, M. Quantification of total and 2-LTR (long terminal repeat) HIV DNA, HIV RNA and herpesvirus DNA in PBMCs. BIO-Protoc. 5, e1492 (2015).

    Google Scholar 

  75. Cassidy, N. A. J. et al. HIV reservoir quantification using cross-subtype multiplex ddPCR. iScience 25, 103615 (2022).

    Google Scholar 

  76. Sneller, M. C. et al. Combination anti-HIV antibodies provide sustained virological suppression. Nature 606, 375–381 (2022).

    Google Scholar 

  77. Søgaard, O. S. et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog 11, e1005142 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors thank all participants in the study, as well as the study teams at the participating sites, for their support of this trial and the following employees of Immunocore: M.L. McCully, D. Cuckovic, and C. Perot for assistance with manuscript preparation; D. Berman, J. Suzich and M. Dar for critical review of the manuscript. This study was funded by Immunocore Ltd with support from the Bill and Melinda Gates Foundation. Research reported in this publication was also supported by the National Institute of Allergy and Infectious Diseases under Awards # UM1AI164561 / PO1 AI178376 (MD). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

  1. HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium

    Linos Vandekerckhove & Mareva Delporte

  2. Guy’s & St Thomas’ NHS Foundation Trust, London; Kings College London, London, UK

    Julie Fox

  3. Department of Infectious Disease, Imperial College London; Imperial College National Institute of Health Research Biomedical Research Centre, London, UK

    Borja Mora-Peris & Sarah Fidler

  4. Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain

    Jordi Navarro

  5. Institut de Recerca Vall d’Hebron, Barcelona, Spain

    Jordi Navarro

  6. Department of Internal Medicine and Infectious Diseases, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium

    Sabine D. Allard

  7. Regional Infectious Diseases Unit, North Manchester General Hospital, Manchester University NHS Foundation Trust, Manchester, UK

    Alison J. Uriel

  8. Department of Infectious Diseases, Ramón y Cajal University Hospital, Madrid; Alcalá University, IRYCIS, CIBERINFEC, Madrid, Spain

    Santiago Moreno Guillén

  9. Department of HIV Medicine, Chelsea and Westminster Hospital, London, UK

    Marta Boffito

  10. Department of Sexual Health and HIV, King’s College Hospital NHS Foundation Trust, London, UK

    Frank A. Post

  11. Hospital Clinico San Carlos-IdiSSC, Ciberinfec, Universidad Complutense, Madrid, Spain

    Vicente Estrada

  12. Department of Infectious Diseases & Fundació Lluita contra la Sida, Institute for Health Science Research Germans Trias I Pujo (IGTP), Badalona, Spain

    Beatriz Mothe

  13. IrsiCaixa AIDS Research Institute, Hospital Germans Trias I Pujol, Badalona, Spain

    Beatriz Mothe

  14. CIBERINFEC, Madrid, Spain; UVic-UCC, Vic, Spain

    Beatriz Mothe

  15. Immunocore Limited, Abingdon, UK

    Adel Benlahrech, Haseeb Rahman, James Clubley, Agatha Treveil, Jonathan Chamberlain, Rory Harrison, Miriam Hock, Sylvie Moureau, Andrew D. Whale, Zoë Wallace, Praveen K. Singh & Lucy Dorrell

  16. Immunocore Limited, Gaithersburg, MD, USA

    Yuan Yuan, Jason Wustner & Kehmia Titanji

Authors

  1. Linos Vandekerckhove
  2. Julie Fox
  3. Borja Mora-Peris
  4. Jordi Navarro
  5. Sabine D. Allard
  6. Alison J. Uriel
  7. Santiago Moreno Guillén
  8. Marta Boffito
  9. Frank A. Post
  10. Vicente Estrada
  11. Beatriz Mothe
  12. Mareva Delporte
  13. Adel Benlahrech
  14. Haseeb Rahman
  15. James Clubley
  16. Agatha Treveil
  17. Jonathan Chamberlain
  18. Rory Harrison
  19. Miriam Hock
  20. Yuan Yuan
  21. Jason Wustner
  22. Sylvie Moureau
  23. Andrew D. Whale
  24. Zoë Wallace
  25. Praveen K. Singh
  26. Kehmia Titanji
  27. Lucy Dorrell
  28. Sarah Fidler

Contributions

The study was designed by Immunocore (study sponsor) in collaboration with the authors. L.V., J.F., B.M., A.B., Y.Y., J.W., A.D.W, Z.W., P.K.S., L.D., and S.F. contributed to the conception, design and planning of the study. M.D., H.R., J.Cl., J.C., R.H., M.H., S.M., Z.W., and P.K.S. performed assays. L.V., J.F., B.M-P., J.N., S.D.A., A.J.U., S.M.G., M.B., F.A.P., V.E., B.M., and S.F. enroled and treated patients and gathered data. M.D., A.B., H.R., A.T., J.C., R.H., M.H., S.M., Z.W., P.K.S., K.T., and L.D. analysed and interpreted data. A.B., A.D.W., Z.W., P.K.S., K.T., and L.D. drafted the manuscript. All authors critically reviewed iterations of the manuscript and approved the final draft for submission.

Corresponding author

Correspondence to Linos Vandekerckhove.

Ethics declarations

Competing interests

L.V. receives research grants from J&J, ViiV Healthcare and Gilead Sciences. J.N. has received fees for educational activities and/or consultancies and/or financial support for attending conferences from AbbVie, Gilead Sciences, Janssen-Cilag, Merck Sharp & Dohme and ViiV Healthcare; S.D.A has received research grants and/or consulting fees from Gilead Sciences, GSK, MSD and ViiV Healthcare. A.J.U. has received financial support for attending a conference from Gilead Sciences. M.B. has received research grants and/or consulting fees from ViiV, Gilead, MSD, GSK, Novavax, Valneva, Cipla, Mylan, Janssen, and Roche. V.E. has received fees for educational activities and/or consultancies and/or financial support for attending conferences from Gilead Sciences, Janssen-Cilag, Merck Sharp and Dohme and ViiV Healthcare. B.M. has received consultancy fees from AELIX Therapeutics SL and AbbVie and speaker fees from Gilead, Janssen and ViiV Healthcare. M.D. was supported by the NIH MDC grant RID-HIV: UM1AI164561 and PO1 AI178376. A.B., H.R., A.T., J.C., R.H., M.H., Y.Y., J.W., S.M., A.D.W., Z.W., P.K.S., K.T., and L.D. were/are employees of Immunocore Ltd. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandekerckhove, L., Fox, J., Mora-Peris, B. et al. Safety and biologic activity of a bispecific T cell receptor targeting HIV Gag in males living with HIV: a first-in-human trial. Nat Commun (2026). https://doi.org/10.1038/s41467-026-68833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-026-68833-2