References
-
Balasooriya, B., Dassanayake, K. & Ajlouni, S. High temperature effects on strawberry fruit quality and antioxidant contents. In: IV International Conference on Postharvest and Quality Management of Horticultural Products of Interest for Tropical Regions 1278. 225–234.
-
Arief, M. A. A. et al. Chlorophyll fluorescence imaging for early detection of drought and heat stress in strawberry plants. Plants 12, 1387 (2023).
-
Kadir, S., Sidhu, G. & Al-Khatib, K. Strawberry (Fragaria x ananassa Duch.) growth and productivity as affected by temperature. HortScience 41, 1423 (2006).
-
Ergin, S. et al. Effects of high temperature stress on enzymatic and nonenzymaticantioxidants and proteins in strawberry plants. Turk. J. Agric. For. 40, 908–917 (2016).
-
Ledesma, N. A. & Kawabata, S. Responses of two strawberry cultivars to severe high temperature stress at different flower development stages. Sci. Hortic. 211, 319–327 (2016).
-
Dash, P. K., Chase, C. A., Agehara, S. & Zotarelli, L. Heat stress mitigation effects of kaolin and s-abscisic acid during the establishment of strawberry plug transplants. Sci. Hortic. 267, 109276 (2020).
-
Ullah, I. et al. High-temperature stress in strawberry: Understanding physiological, biochemical and molecular responses. Planta 260, 118 (2024).
-
Muneer, S., Park, Y. G., Kim, S. & Jeong, B. R. Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins. J. Plant Growth Regul. 36, 836–845 (2017).
-
Aghdam, O. A., Hajilou, J., Bolandnazar, S. & Dehghan, G. Effect Of 24-Epi brassinolide on some BiochemicalCharacteristics of parus and gaviota strawberry cultivars under heat stress conditions. Yuzuncu Yıl Univ J Agric Sci 30, 429–437 (2020).
-
Manafi, H., Baninasab, B., Gholami, M., Talebi, M. & Khanizadeh, S. Exogenous melatonin alleviates heat-induced oxidative damage in strawberry (Fragaria× ananassa Duch. Cv. Ventana) Plant. J Plant Growth Regul 41, 52–64 (2022).
-
Shirdel, M., Eshghi, S., Shahsavandi, F. & Fallahi, E. Arbuscular mycorrhiza inoculation mitigates the adverse effects of heat stress on yield and physiological responses in strawberry plants. Plant Physiol. Biochem. 221, 109629 (2025).
-
Kesici, M. et al. Heat-stress tolerance of some strawberry (Fragaria× ananassa) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41, 244–249 (2013).
-
Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. R. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61, 199–223 (2007).
-
Angon, P. B. et al. Plant development and heat stress: Role of exogenous nutrients and phytohormones in thermotolerance. Discover Plants 1, 17 (2024).
-
Seymour, Z. J., Mercedes, J. F. & Fang, J.-Y. Effect of heat acclimation on thermotolerance of in vitro strawberry plantlets. Folia Hortic 36, 135–147 (2024).
-
Naikoo M. I. et al. Role and regulation of plants phenolics in abiotic stress tolerance: An overview. Plant signaling molecules, 157–168 (2019).
-
Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).
-
Shi, Q., Bao, Z., Zhu, Z., Ying, Q. & Qian, Q. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul. 48, 127–135 (2006).
-
Wang, L.-J. et al. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. 10, 34 (2010).
-
Wassie, M. et al. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicol Environ Saf 191, 110206 (2020).
-
Nazar, R., Iqbal, N. & Khan, N. A. Salicylic acid: A multifaceted hormone (Springer, Berlin, 2017).
-
Luo, Y., Liu, M., Cao, J., Cao, F. & Zhang, L. The role of salicylic acid in plant flower development. Forestry Res 2, 14 (2022).
-
Yang, H. et al. Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops. Front. Plant Sci. 14, 1226041 (2023).
-
Basirat, M. & Mousavi, S. M. Effect of foliar application of silicon and salicylic acid on regulation of yield and nutritional responses of greenhouse cucumber under high temperature. J. Plant Growth Regul. 41, 1978–1988 (2022).
-
Samad, A. G. A. & Shaaban, A. Fulvic and salicylic acids improve morpho-physio-biochemical attributes, yield and fruit quality of two mango cultivars exposed to dual salinity and heat stress conditions. J. Soil Sci. Plant Nutr. 24, 6305–6324 (2024).
-
Sun, Y. et al. Root-applied brassinosteroid and salicylic acid enhance thermotolerance and fruit quality in heat-stressed ‘Kyoho’grapevines. Front. Plant Sci. 16, 1563270 (2025).
-
Saleem, W., Khan, M. A. & Akram, M. T. Exogenous application of salicylic acid improves physiochemical and quality traits of tomato (Solanum lycopersicum L.) under elevated temperature stress. Pak. J. Bot 57, 441–449 (2025).
-
Ghaderi, N., Normohammadi, S. & Javadi, T. Morpho-physiological responses of strawberry (Fragaria× ananassa) to exogenous salicylic acid application under drought stress. (2015).
-
Karlidag, H., Yildirim, E. & Turan, M. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci Agricola 66, 180–187 (2009).
-
Roshdy, A.E.-D., Alebidi, A., Almutairi, K., Al-Obeed, R. & Elsabagh, A. The effect of salicylic acid on the performances of salt stressed strawberry plants, enzymes activity, and salt tolerance index. Agronomy 11, 775 (2021).
-
Lamnai, K. et al. Impact of exogenous application of salicylic acid on growth, water status and antioxidant enzyme activity of strawberry plants (Fragaria vesca L.) under salt stress conditions. Gesunde Pflanzen 73, 465–478 (2021).
-
Karlidag, H., Yildirim, E. & Turan, M. Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. J. Plant Nutr. Soil Sci. 172, 270–276 (2009).
-
Miura, K. & Tada, Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 5, 4 (2014).
-
Khajeh Sorkhoeih, M., Hamidi Moghaddam, A. & Seyedi, A. Different biochemical and morphological responses of the strawberry cultivars to salicylic acid and heat shock. BMC Plant Biol. 25, 1208 (2025).
-
Jamali, B., Eshghi, S. & Kholdebarin, B. Antioxidant responses of ‘Selva’strawberry as affected by salicylic acid under salt stress. J Berry Res 6, 291–301 (2016).
-
Faghih, S., Ghobadi, C. & Zarei, A. Response of strawberry plant cv.‘Camarosa’to salicylic acid and methyl jasmonate application under salt stress condition. J Plant Growth Regul 36, 651–659 (2017).
-
Ledesma, N., Kawabata, S. & Sugiyama, N. Effect of high temperature on protein expression in strawberry plants. Biol. Plant. 48, 73–79 (2004).
-
Noshirvani, N., Alimari, I. & Mantashloo, H. Impact of carboxymethyl cellulose coating embedded with oregano and rosemary essential oils to improve the post-harvest quality of fresh strawberries. J Food Meas Charact 17, 5440–5454 (2023).
-
Seyedi, A. & Afsharipour, S. Evaluation of some morphological, biochemical and antioxidant properties of some mandarin cultivars. Res Pomol 4, 29–42 (2019).
-
Lichtenthaler, H. K. & Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr Protocols Food Anal Chem 1, 31–38 (2001).
-
Zhang, J. & Kirkham, M. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132, 361–373 (1996).
-
Kar, M. & Mishra, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57, 315–319 (1976).
-
Wang, J. W., Zheng, L. P., Wu, J. Y. & Tan, R. X. Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide 15, 351–358 (2006).
-
Herms, D. A. & Mattson, W. J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67, 283–335 (1992).
-
Hattas, D., Scogings, P. F. & Julkunen-Tiitto, R. Does the growth differentiation balance hypothesis explain allocation to secondary metabolites in Combretum apiculatum, an African savanna woody species?. J. Chem. Ecol. 43, 153–163 (2017).
-
Ferrenberg, S., Vázquez-González, C., Lee, S. R. & Kristupaitis, M. Divergent growth-differentiation balance strategies and resource competition shape mortality patterns in ponderosa pine. Ecosphere 14, e4349 (2023).
-
Dixon, R. A. & Paiva, N. L. Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085 (1995).
-
Rivero, R. M., Ruiz, J. M. & Romero, L. Can grafting in tomato plants strengthen resistance to thermal stress?. J. Sci. Food Agric. 83, 1315–1319 (2003).
-
Fernández-Crespo, E. et al. Exploiting tomato genotypes to understand heat stress tolerance. Plants 11, 3170 (2022).
-
Ajani, A., Soleimani, A., Zeinanloo, A. A., Seifi, E. & Taheri, M. Differential display of heat stress tolerance of olive cultivars’ zard’and’direh’based on physiological and biochemical indexes as well as PPO and PAL genes expression pattern. (2021).
-
Foyer, C. H. & Noctor, G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2–18 (2011).
-
Stavang, J. A. et al. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 60, 589–601 (2009).
-
Poorter, H. et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).
-
Szymańska, R., Ślesak, I., Orzechowska, A. & Kruk, J. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139, 165–177 (2017).
-
Mayer, A. M. Polyphenol oxidases in plants and fungi: Going places?. A review. Phytochemistry 67, 2318–2331 (2006).
-
Allakhverdiev, S. I. et al. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541–550 (2008).
-
Zahra, N. et al. Plant photosynthesis under heat stress: Effects and management. Environ. Exp. Bot. 206, 105178 (2023).
-
El-Mogy, M. M., Garchery, C. & Stevens, R. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agriculturae Scandinavica, Sect B Soil Plant Sci 68, 727–737 (2018).
-
Ledesma, N. A., Nakata, M. & Sugiyama, N. Effect of high temperature stress on the reproductive growth of strawberry cvs‘Nyoho’and ‘Toyonoka’. Sci Hortic 116, 186–193 (2008).
-
Vlot, A. C., Dempsey, D. M. A. & Klessig, D. F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47, 177–206 (2009).
-
Conrath, U. Priming of induced plant defense responses. Adv. Bot. Res. 51, 361–395 (2009).
-
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A. & Khan, N. A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6, 462 (2015).
-
Walters, D. & Heil, M. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 71, 3–17 (2007).
