References
-
Chen, M. et al. Blockchain-enabled healthcare system for detection of diabetes. J. Information Secur. Appl. 58, 102771 (2021).
-
Tripathi, G., Ahad, M. A. & Paiva, S. S2HS-A blockchain-based approach for smart healthcare system. In Healthcare, Elsevier 8(1), 100391 (2020).
-
Mekruksavanich, S. & Jitpattanakul, A. Effective Detection of Epileptic Seizures through EEG Signals Using Deep Learning Approaches. Mach. Learn. Knowl. Extr. 5, 1937–1952. https://doi.org/10.3390/make5040094 (2023).
-
Mohiyuddin, A., Javed, A.R., Chakraborty, C., Rizwan, M., Shabbir, M., and Nebhen, J. “Secure cloud storage for medical IoT data using adaptive neuro-fuzzy inference system,” International Journal of Fuzzy Systems. 1–13, 2021.
-
Pandey, P. & Litoriya, R. Securing and authenticating healthcare records through blockchain technology. Cryptologia 44(4), 341–356 (2020).
-
Ahmed, B. et al. Ensemble machine learning based identification of Adult Epilepsy. Mathe. Model. Eng. Problems 10, 1 (2023).
-
Hussein, R., Lee, S. & Ward, R. Multi-channel vision transformer for epileptic seizure prediction. Biomedicines 10(7), 1551 (2022).
-
Mohanty, M. D. et al. Design of smart and secured healthcare service using deep learning with modified SHA-256 algorithm. In Healthcare 10, 1275 (2022).
-
Mallick, S. & Baths, V. Novel Deep Learning Framework for Detection of Epileptic Seizures using EEG Signals. Front. Comput. Neurosci. 18, 1340251 (2024).
-
Prasanna, C. S. L., Rahman, M. Z. U. & Bayleyegan, M. D. Brain Epileptic Seizure Detection using Joint CNN and Exhaustive Feature Selection with RNN-BLSTM Classifier. IEEE Access 11, 97990–98004 (2023).
-
Daoud, H., Williams, P., and Bayoumi, M. IoT-based efficient epileptic seizure prediction system using deep learning. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) 1–6 IEEE. 2020
-
Rahman, M. A., Hossain, M. S., Islam, M. S., Alrajeh, N. A. & Muhammad, G. Secure and provenance enhanced internet of health things framework: A blockchain managed federated learning approach. IEEE Access 8, 205071–205087 (2020).
-
Usman, S. M., Khalid, S. & Bashir, S. A deep learning based ensemble learning method for epileptic seizure prediction. Comput. Biol. Med. 136, 104710 (2021).
-
Ma, Y. et al. A multi-channel feature fusion CNN-Bi-LSTM Epilepsy EEG classification and prediction model based on attention mechanism. IEEE Access 11, 62855–62864 (2023).
-
D. Połap, G. Srivastava, A. Jolfaei, and R. M. Parizi. “Blockchain Technology and Neural Networks for the Internet of Medical Things,” IEEE INFOCOM 2020 – IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 508–513, 2020.
-
Wang, J. et al. A multistage blockchain-based secure and trustworthy smart healthcare system using ECG characteristics. IEEE Internet of Things Magazine 4(3), 48–58 (2021).
-
Yedurkar, D. P., Metkar, S., Al-Turjman, F., Yardi, N. & Stephan, T. An IoT-based novel hybrid seizure detection approach for epileptic monitoring. IEEE Trans. Industr. Inf. 20(2), 1420–1431 (2023).
-
Prathaban, B. P., Balasubramanian, R. & Kalpana, R. ForeSeiz: An IoMT-based headband for Real-time epileptic seizure forecasting. Expert Syst. Appl. 188, 116083 (2022).
-
Singh, K. & Malhotra, J. IoT and cloud computing-based automatic epileptic seizure detection using HOS features-based random forest classification. J. Ambient. Intell. Humaniz. Comput. 14(11), 15497–15512 (2023).
-
Goyal, A., Kaushik, S. & Khan, R. IoT IoT-based cloud network for smart health care using an optimization algorithm. Informatics in Medicine Unlocked 27, 100792 (2021).
-
Ramkumar, M., Jamaesha, S. S., Gowtham, M. S. & Kumar, C. S. IoT and cloud computing-based automated epileptic seizure detection using optimized Siamese convolutional sparse autoencoder network. SIViP 18(4), 3509–3525 (2024).
-
Song, K. et al. An intelligent epileptic prediction system based on synchrosqueezed wavelet transform and multi-level feature CNN for smart healthcare IoT. Sensors 22(17), 6458 (2022).
-
Idrees, A. K., Idrees, S. K., Couturier, R. & Ali-Yahiya, T. An edge-fog computing-enabled lossless EEG data compression with epileptic seizure detection in IoMT networks. IEEE Internet Things J. 9(15), 13327–13337 (2022).
-
Xin, Qi., Shaohai, Hu., Liu, S., Zhao, L. & Zhang, Y.-D. An attention-based wavelet convolution neural network for epilepsy EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 957–966 (2022).
-
Basavaiah, J., Anthony, A. A., Mahadevaswamy, S. & Naveen Kumar, H. N. An efficient approach to an epilepsy seizure alert system using IoT and machine learning. Journal of Reliable Intelligent Environments 10(4), 449–461 (2024).
-
Khosravi, M., Parsaei, H., Rezaee, K. & Helfroush, M. S. Fusing convolutional learning and attention-based Bi-LSTM networks for early Alzheimer’s diagnosis from EEG signals towards IoMT. Sci. Rep. 14(1), 26002 (2024).
-
Rezaee, K., Azizi, E. & Haddadnia, J. Optimized seizure detection algorithm: a fast approach for onset of epileptic seizures in EEG signals using GT discriminant analysis and K-NN classifier. Journal of biomedical physics & engineering 6(2), 81 (2016).
-
Nemati, N., Meshgini, S., Rezaii, T. Y. & Afrouzian, R. Neonatal seizure detection from EEG using inception ResNetV2 feature extraction and XGBoost optimized with particle swarm optimization. Sci. Rep. 15(1), 41493 (2025).
-
Kode, H., Elleithy, K. & Almazedah, L. Epileptic Seizure detection in EEG signals using Machine Learning and Deep Learning Techniques. IEEE Access. 12, 80657–80668 (2024).
-
Daoud, H., Williams, P. and Bayoumi, M., “IoT-based efficient epileptic seizure prediction system using deep learning,” 2020 IEEE 6th World Forum on Internet of Things (WF-IoT)1–6, 2020
-
Rajendran, V. G., Jayalalitha, S., Adalarasu, K. & Nirmalraj, T. Development of a single-channel EEG Acquisition system for BCI applications. Research Journal of Pharmacy and Technology 14(9), 4705–4709 (2021).
-
Xue, J. & Shen, B. A novel swarm intelligence optimization approach: Sparrow Search Algorithm. Systems Science & Control Engineering 8(1), 22–34 (2020).
-
Chu, S.C., Tsai, P.W., and Pan, J.S. Cat swarm optimization. In Pacific Rim international conference on artificial intelligence 854–858. Springer, Berlin, Heidelberg. 2006
-
CHB-MIT Scalp EEG Database, https://archive.physionet.org/physiobank/database/chbmit/, Accessed on 2023.
