Scaled up fed-batch production of recombinant alpha-1-antitrypsin by CHO cells in single-use surface aerated orbital shaken bioreactor

scaled-up-fed-batch-production-of-recombinant-alpha-1-antitrypsin-by-cho-cells-in-single-use-surface-aerated-orbital-shaken-bioreactor
Scaled up fed-batch production of recombinant alpha-1-antitrypsin by CHO cells in single-use surface aerated orbital shaken bioreactor
  • Connolly, B. et al. SERPINA1 mRNA as a treatment for alpha-1 antitrypsin deficiency. J. Nucl. Acids 2018, 7 (2018).

    Google Scholar 

  • Kelly, E. et al. Alpha-1 antitrypsin deficiency. Respir. Med. 104(6), 763–772 (2010).

    Google Scholar 

  • Ferrarotti, I. et al. Identification and characterisation of eight novel SERPINA1 Null mutations. Orphanet J. Rare Dis. 9, 172–172 (2014).

    Google Scholar 

  • Lusch, A. et al. Development and analysis of alpha 1-antitrypsin neoglycoproteins: The impact of additional N-glycosylation sites on serum half-life. Mol. Pharm. 10(7), 2616–2629 (2013).

    Google Scholar 

  • Silberstein, D. Z. et al. An oxidation-resistant, recombinant alpha-1 antitrypsin produced in Nicotiana benthamiana. Free Radical Biol. Med. 120, 303–310 (2018).

    Google Scholar 

  • Stoller, J. K. & Aboussouan, L. S. A review of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 185(3), 246–259 (2012).

    Google Scholar 

  • Stockley, R. A. & Turner, A. M. alpha-1-Antitrypsin deficiency: Clinical variability, assessment, and treatment. Trends Mol. Med. 20(2), 105–115 (2014).

    Google Scholar 

  • Brantly, M. L., Lascano, J. E. & Shahmohammadi, A. Intravenous alpha-1 antitrypsin therapy for alpha-1 antitrypsin deficiency: The current state of the evidence. Chron. Obstructive Pulm. Dis. (Miami, Fla.) 6(1), 100–114 (2018).

    Google Scholar 

  • Amann, T. et al. Glyco-engineered CHO cell lines producing alpha-1-antitrypsin and C1 esterase inhibitor with fully humanized N-glycosylation profiles. Metab. Eng. 52, 143–152 (2019).

    Google Scholar 

  • Morifuji, Y. et al. Expression, purification, and characterization of recombinant human α1-antitrypsin produced using silkworm-baculovirus expression system. Mol. Biotechnol. 60(12), 924–934 (2018).

    Google Scholar 

  • Soucie, J. M. et al. Evidence for the transmission of parvovirus B19 in patients with bleeding disorders treated with plasma-derived factor concentrates in the era of nucleic acid test screening. Transfusion 53(6), 1217–1225 (2013).

    Google Scholar 

  • Zhang, L. et al. Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed. J. Biotechnol. 164(2), 300–308 (2013).

    Google Scholar 

  • Tawara, I. et al. Alpha-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proc. Natl. Acad. Sci. U.S.A. 109(2), 564–569 (2012).

    Google Scholar 

  • Janciauskiene, S. & Welte, T. Well-known and less well-known functions of alpha-1 antitrypsin. Its role in chronic obstructive pulmonary disease and other disease developments. Ann. Am. Thoracic Soc. 13, S280–S288 (2016).

    Google Scholar 

  • Jonigk, D. et al. Anti-inflammatory and immunomodulatory properties of α1-antitrypsin without inhibition of elastase. Proc. Natl. Acad. Sci. U.S.A. 110(37), 15007–15012 (2013).

    Google Scholar 

  • Stockley, R. A. The multiple facets of alpha-1-antitrypsin. Ann. Transl. Med. 3(10), 130 (2015).

    Google Scholar 

  • Grimstein, C. et al. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model. J. Transl. Med. 9, 21–21 (2011).

    Google Scholar 

  • Joosten, L. A. B. et al. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann. Rheum. Dis. 75(6), 1219–1227 (2016).

    Google Scholar 

  • Grimstein, C. et al. Combination of alpha-1 antitrypsin and doxycycline suppresses collagen-induced arthritis. J. Gene Med. 12(1), 35–44 (2010).

    Google Scholar 

  • Toldo, S. et al. Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia–reperfusion injury. J. Mol. Cell. Cardiol. 51(2), 244–251 (2011).

    Google Scholar 

  • Lewis, E. C. et al. alpha1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc. Natl. Acad. Sci. U.S.A. 105(42), 16236–16241 (2008).

    Google Scholar 

  • Bellacen, K. et al. Revascularization of Pancreatic Islet Allografts is Enhanced by α-1-Antitrypsin under Anti-Inflammatory Conditions. Cell Transplant. 22(11), 2119–2133 (2013).

    Google Scholar 

  • Moldthan, H. L. et al. Alpha 1-antitrypsin therapy mitigated ischemic stroke damage in rats. J. Stroke Cerebrovasc. Dis. 23(5), e355–e363 (2014).

    Google Scholar 

  • Jedicke, N. et al. Alpha-1-antitrypsin inhibits acute liver failure in mice. Hepatology 59(6), 2299–2308 (2014).

    Google Scholar 

  • Lee, K. J. et al. N-glycan analysis of human α1-antitrypsin produced in Chinese hamster ovary cells. Glycoconj. J. 30(5), 537–547 (2013).

    Google Scholar 

  • Gerngross, T. U. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat. Biotechnol. 22, 1409 (2004).

    Google Scholar 

  • Terry Spencer, L., Humphries, J. & Brantly, M. Antibody response to aerosolized transgenic human alpha 1 -antitrypsin. N. Engl. J. Med. 352, 2030–1 (2005).

    Google Scholar 

  • Niklas, J. et al. Primary metabolism in the new human cell line AGE1.HN at various substrate levels: Increased metabolic efficiency and α1-antitrypsin production at reduced pyruvate load. Appl. Microbiol. Biotechnol. 93(4), 1637–50 (2012).

    Google Scholar 

  • Niklas, J. et al. Metabolism and metabolic burden by α1-antitrypsin production in human AGE1.HN cells. Metabol. Eng. 16, 103–114 (2013).

    Google Scholar 

  • Chin, C. L. et al. Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. BMC Biotechnol. 15, 44–44 (2015).

    Google Scholar 

  • Lalonde, M.-E. et al. Production of α2,6-sialylated and non-fucosylated recombinant alpha-1-antitrypsin in CHO cells. J. Biotechnol. 307, 87–97 (2020).

    Google Scholar 

  • Monteil, D. T. et al. A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation. Biotechnol. Prog. 32(5), 1174–1180 (2016).

    Google Scholar 

  • Coronel, J. et al. Influenza A virus production in a single-use orbital shaken bioreactor with ATF or TFF perfusion systems. Vaccine 37(47), 7011–7018 (2019).

    Google Scholar 

  • Bürgin, T. et al. Orbitally shaken single-use bioreactor for animal cell cultivation: fed-batch and perfusion mode. In Animal Cell Biotechnology: Methods and Protocols 105–123 (New York, NY, Springer, US, 2019).

    Google Scholar 

  • Blessing, D. et al. Scalable production of AAV vectors in orbitally shaken HEK293 cells. Mol. Ther. Methods Clin. Dev. 13, 14–26 (2019).

    Google Scholar 

  • David (Xiaojian) Zhao, B.N., Mark Stramaglia, Richard Fike. Improving Protein Production in CHO cells. 2008 (2008).

  • Grilo, A. L. & Mantalaris, A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 37(1), 9–16 (2019).

    Google Scholar 

  • López-Meza, J. et al. Using simple models to describe the kinetics of growth, glucose consumption, and monoclonal antibody formation in naive and infliximab producer CHO cells. Cytotechnology 68(4), 1287–1300 (2016).

    Google Scholar 

  • Dumont, J. et al. Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Crit. Rev. Biotechnol. 36(6), 1110–1122 (2016).

    Google Scholar 

  • Hansen, H. G. et al. Case study on human α1-antitrypsin: Recombinant protein titers obtained by commercial ELISA kits are inaccurate. Biotechnol. J. 11(12), 1648–1656 (2016).

    Google Scholar 

  • Johnson, D. A. & Travis, J. Human alpha-1-proteinase inhibitor mechanism of action: Evidence for activation by limited proteolysis. Biochem. Biophys. Res. Commun. 72(1), 33–39 (1976).

    Google Scholar 

  • Bi, X. et al. Proteomic profiling of barley spent grains guides enzymatic solubilization of the remaining proteins. Appl. Microbiol. Biotechnol. 102(9), 4159–4170 (2018).

    Google Scholar 

  • Hogwood, C. E. M., Bracewell, D. G. & Smales, C. M. Host cell protein dynamics in recombinant CHO cells. Bioengineered 4(5), 288–291 (2013).

    Google Scholar 

  • Koyuturk, I. et al. High-level production of wild-type and oxidation-resistant recombinant alpha-1-antitrypsin in glycoengineered CHO cells. Biotechnol. Bioeng. 119, 2331–2344 (2022).

    Google Scholar 

  • Viglio, S. et al. Methods of purification and application procedures of alpha1 antitrypsin: A long-lasting history. Molecules 25, 4014 (2020).

    Google Scholar 

  • Li, F., et al. Current Therapeutic Antibody Production and Process Optimization. 5. (2007).

  • Glaser, C. B., Karic, L. & Cohen, A. B. Low pH stability of alpha-1-antitrypsin. Biochimica et Biophysica Acta BBA Protein Struct. 491(1), 325–330 (1977).

    Google Scholar 

  • Huangfu, C. et al. Large-scale purification of high purity α1-antitrypsin from Cohn Fraction IV with virus inactivation by solvent/detergent and dry-heat treatment. Biotechnol. Appl. Biochem. 65(3), 446–454 (2018).

    Google Scholar 

  • McNulty, M. J. et al. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radical Biol. Med. 163, 10–30 (2021).

    Google Scholar 

  • Jinyan, Q. et al. The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures. Appl. Microbiol. Biotechnol. 103, 1217–1229 (2018).

    Google Scholar 

  • Martínez, V. S. et al. Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. Bioeng. 110(2), 660–666 (2013).

    Google Scholar 

  • Hiller, G. W. et al. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Biotechnol. Bioeng. 114(7), 1438–1447 (2017).

    Google Scholar 

  • Mulukutla, B. C. et al. Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Biotechnol. Bioeng. 114(8), 1779–1790 (2017).

    Google Scholar 

  • Xu, S. et al. Probing lactate metabolism variations in large-scale bioreactors. Biotechnol. Prog. 34(3), 756–766 (2018).

    Google Scholar 

  • Yang, M. & Butler, M. Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol. Bioeng. 68(4), 370–380 (2000).

    Google Scholar 

  • Freund, N. W. & Croughan, M. S. A simple method to reduce both lactic acid and ammonium production in industrial animal cell culture. Int. J. Mol. Sci. 19(2), 385 (2018).

    Google Scholar 

  • Klöckner, W. et al. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale. J. Biol. Eng. 7(1), 28–28 (2013).

    Google Scholar 

  • Pallister, E. G. et al. Exploiting the Disialyl Galactose Activity of α2,6-Sialyltransferase from Photobacterium damselae To Generate a Highly Sialylated Recombinant α-1-Antitrypsin. Biochemistry 59(34), 3123–3128 (2020).

    Google Scholar 

  • Darja, O. et al. Responses of CHO cell lines to increased pCO2 at normal (37°C) and reduced (33°C) culture temperatures. J. Biotechnol. 219, 98–109 (2016).

    Google Scholar 

  • Fox, S. R. et al. Maximizing interferon-γ production by chinese hamster ovary cells through temperature shift optimization: Experimental and modeling. Biotechnol. Bioeng. 85(2), 177–184 (2004).

    Google Scholar 

  • Hogiri, T. et al. Optimization of a pH-shift control strategy for producing monoclonal antibodies in Chinese hamster ovary cell cultures using a pH-dependent dynamic model. J. Biosci. Bioeng. 125(2), 245–250 (2018).

    Google Scholar 

  • Khattak, S. F. et al. Feed development for fed-batch CHO production process by semisteady state analysis. Biotechnol. Prog. 26(3), 797–804 (2010).

    Google Scholar 

  • Li, F. et al. Cell culture processes for monoclonal antibody production. mAbs 2(5), 466–479 (2010).

    Google Scholar