References
-
Richardson, C., Kelsh, R. N. & R, J. R. New advances in CRISPR/Cas-mediated precise gene-editing techniques. Dis. Model Mech. 16, https://doi.org/10.1242/dmm.049874 (2023).
-
Riesenberg, S. et al. Efficient high-precision homology-directed repair-dependent genome editing by HDRobust. Nat. Methods 20, 1388–1399 (2023).
-
Wimberger, S. et al. Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing. Nat. Commun. 14, 4761 (2023).
-
Shy, B. R. et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531 (2023).
-
Pandey, S. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01227-1 (2024).
-
Selvaraj, S. et al. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat. Biotechnol. 42, 731–744 (2024).
-
Stewart-Ornstein, J. & Lahav, G. Dynamics of CDKN1A in Single Cells Defined by an Endogenous Fluorescent Tagging Toolkit. Cell Rep. 14, 1800–1811 (2016).
-
Eghbalsaied, S. & Kues, W. A. CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII. Sci. Rep. 13, 2690 (2023).
-
Li, S. et al. Universal toxin-based selection for precise genome engineering in human cells. Nat. Commun. 12, 497 (2021).
-
Agudelo, D. et al. Marker-free coselection for CRISPR-driven genome editing in human cells. Nat. Methods 14, 615–620 (2017).
-
Challagulla, A. et al. Marker counter-selection via CRISPR/Cas9 co-targeting for efficient generation of genome-edited avian cell lines and germ cells. Anim. Biotechnol. 33, 1235–1245 (2022).
-
Reuven, N. & Shaul, Y. Selecting for CRISPR-edited knock-in Cells. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms231911919 (2022).
-
Moran, D. M., Shen, H. & Maki, C. G. Puromycin-based vectors promote a ROS-dependent recruitment of PML to nuclear inclusions enriched with HSP70 and Proteasomes. BMC Cell Biol. 10, 32 (2009).
-
Rosenbloom, J., Endo, R. & Harsch, M. Termination of procollagen chain synthesis by puromycin. Evidence that assembly and secretion require a COOH-terminal extension. J. Biol. Chem. 251, 2070–2076 (1976).
-
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
-
DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).
-
Laughery, M. F. & Wyrick, J. J. Simple CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Curr. Protoc. Mol. Biol. 129, e110 (2019).
-
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).
-
Penewit, K. et al. Efficient and scalable precision genome editing in Staphylococcus aureus through conditional recombineering and CRISPR/Cas9-mediated counterselection. mBio 9, https://doi.org/10.1128/mBio.00067-18 (2018).
-
Oh, J. H. & van Pijkeren, J. P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131 (2014).
-
Kakarougkas, A. & Jeggo, P. A. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol. 87, 20130685 (2014).
-
Truong, L. N. et al. Microhomology-mediated end Joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc. Natl. Acad. Sci. USA 110, 7720–7725 (2013).
-
Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12, 440–450 (2006).
-
Shrivastav, M., De Haro, L. P. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134–147 (2008).
-
Bernheim, A., Bikard, D., Touchon, M. & Rocha, E. P. C. A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180088 (2019).
-
Sharda, M., Badrinarayanan, A. & Seshasayee, A. S. N. Evolutionary and comparative analysis of bacterial nonhomologous end joining repair. Genome Biol. Evol. 12, 2450–2466 (2020).
-
Chayot, R., Montagne, B., Mazel, D. & Ricchetti, M. An end-joining repair mechanism in Escherichia coli. Proc. Natl. Acad. Sci. USA 107, 2141–2146 (2010).
-
Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701–714 (2015).
-
Schimmel, J. et al. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Rep. 42, https://doi.org/10.1016/j.celrep.2023.112019 (2023).
-
Zheng, T. et al. Profiling single-guide RNA specificity reveals a mismatch-sensitive core sequence. Sci. Rep. 7, 40638 (2017).
-
Wang, Y. et al. Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing. Sci. Rep. 10, 2269 (2020).
-
Steyer, B. et al. Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Rep. 10, 642–654 (2018).
-
Sluch, V. M. et al. Highly efficient scarless knock-in of reporter genes into human and mouse pluripotent stem cells via transient antibiotic selection. PLoS ONE 13, e0201683 (2018).
-
Cerbini, T., Luo, Y., Rao, M. S. & Zou, J. Transfection, selection, and colony-picking of human induced pluripotent stem cells TALEN-targeted with a GFP gene into the AAVS1 safe harbor. J. Vis. Exp. https://doi.org/10.3791/52504 (2015).
-
Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
-
Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).
-
Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).
-
Cullot, G. et al. Genome editing with the HDR-enhancing DNA-PKcs inhibitor AZD7648 causes large-scale genomic alterations. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02488-6 (2024).
-
Riesenberg, S., Kanis, P., Karlic, R. & Maricic, T. Robust prediction of synthetic gRNA activity and cryptic DNA repair by disentangling cellular CRISPR cleavage outcomes. Nat. Commun. 16, 4717 (2025).
-
Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).
-
Riesenberg, S., Helmbrecht, N., Kanis, P., Maricic, T. & Paabo, S. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nat. Commun. 13, 489 (2022).
-
Zhang, L. et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat. Commun. 12, https://doi.org/10.1038/s41467-021-24017-8 (2021).
-
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).
-
Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).
-
Koenig, Z. et al. A harmonized public resource of deeply sequenced diverse human genomes. Genome Res. 34, 796–809 (2024).
-
Zeberg, H., Jakobsson, M. & Pääbo, S. The genetic changes that shaped Neandertals, Denisovans, and modern humans. Cell 187, 1047–1058 (2024).
-
Anzai, T. et al. Generation of Efficient Knock-in Mouse and Human Pluripotent Stem Cells Using CRISPR-Cas9. Methods Mol. Biol. 2320, 247–259 (2021).
-
Gonzalez, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226 (2014).
-
Lindgren, A. G., Veldman, M. B. & Lin, S. ETV2 expression increases the efficiency of primitive endothelial cell derivation from human embryonic stem cells. Cell Regen. 4, 1 (2015).
-
Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate engineering. Nat. Biotechnol. 39, 510–519 (2021).
-
Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229 e226 (2023).
-
Rojek, J. B. et al. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing. Biotechnol. Bioeng. 120, 1478–1491 (2023).
-
Liu, Z. et al. ErCas12a CRISPR-MAD7 for model generation in human cells, mice, and rats. CRISPR J. 3, 97–108 (2020).
-
Gonatopoulos-Pournatzis, T. et al. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform. Nat. Biotechnol. 38, 638–648 (2020).
-
Muller, P. A. & Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol. 15, 2–8 (2013).
-
Rowley, J. D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).
-
Groffen, J. & Heisterkamp, N. The BCR/ABL hybrid gene. Baillieres Clin. Haematol. 1, 983–999 (1987).
-
Tycko, J. et al. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat. Commun. 10, 4063 (2019).
-
Turchiano, G. et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell 28, 1136–1147 e1135 (2021).
-
Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).
-
Wienert, B. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286–289 (2019).
-
Schiroli, G. et al. Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response. Cell Stem Cell 24, 551–565 e558 (2019).
-
Conti, A. et al. S255: Cellular senescence and inflammatory programs are unintended consequences of CRISPR-CAS9 gene editing in hematopoietic stem and progenitor cells. HemaSphere 7, e7928137 (2023).
-
Onder, T. T. & Daley, G. Q. New lessons learned from disease modeling with induced pluripotent stem cells. Curr. Opin. Genet Dev. 22, 500–508 (2012).
-
Schmieder, V. et al. Towards maximum acceleration of monoclonal antibody development: leveraging transposase-mediated cell line generation to enable GMP manufacturing within 3 months using a stable pool. J. Biotechnol. 349, 53–64 (2022).
-
Ramachandran, H., Martins, S., Kontarakis, Z., Krutmann, J. & Rossi, A. Fast but not furious: a streamlined selection method for genome-edited cells. Life Sci. Alliance 4, https://doi.org/10.26508/lsa.202101051 (2021).
-
Kim, K. T. et al. Safe scarless cassette-free selection of genome-edited human pluripotent stem cells using temporary drug resistance. Biomaterials 262, 120295 (2020).
-
Kim, H. et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat. Methods 8, 941–943 (2011).
-
Chang, C. R. et al. SEED-Selection enables high-efficiency enrichment of primary T cells edited at multiple loci. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02531-6 (2025).
-
Allen, A. G. et al. A highly efficient transgene knock-in technology in clinically relevant cell types. Nat. Biotechnol. 42, 458–469 (2024).
-
Chen, Q., Zhang, Y. & Yin, H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv. Drug Deliv. Rev. 168, 246–258 (2021).
-
Liu, L. et al. Circular guide RNA for improved stability and CRISPR-Cas9 editing efficiency in vitro and in bacteria. ACS Synth. Biol. 12, 350–359 (2023).
-
Bin Moon, S. et al. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3’-overhang. Nat. Commun. 9, 3651 (2018).
-
Xun, G. et al. Harnessing noncanonical crRNA for highly efficient genome editing. Nat. Commun. 15, 3823 (2024).
-
Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).
-
Fu, B. X., Hansen, L. L., Artiles, K. L., Nonet, M. L. & Fire, A. Z. Landscape of target: guide homology effects on Cas9-mediated cleavage. Nucleic Acids Res. 42, 13778–13787 (2014).
-
Bodai, Z., Bishop, A. L., Gantz, V. M. & Komor, A. C. Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nat. Commun. 13, 2351 (2022).
-
Bishop, A. L. et al. Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles. Nat. Commun. 13, 2595 (2022).
-
Moller, L. et al. Recursive Editing improves homology-directed repair through retargeting of undesired outcomes. Nat. Commun. 13, 4550 (2022).
-
Niwa, R. et al. Enrichment of allelic editing outcomes by prime editing in induced pluripotent stem cells. CRISPR J. 7, 293–304 (2024).
-
Qi, T. et al. Base editing-mediated generation of point mutations into human pluripotent stem cells for modeling disease. Front. Cell Dev. Biol. 8, 590581 (2020).
-
Lackner, M., Helmbrecht, N., Paabo, S. & Riesenberg, S. Detection of unintended on-target effects in CRISPR genome editing by DNA donors carrying diagnostic substitutions. Nucleic Acids Res. 51, e26 (2023).
-
Liu, B. et al. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat. Biotechnol. 42, 1039–1045 (2024).
-
Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).
-
Jiao, C. et al. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science 372, 941–948 (2021).
-
Bravo, J. P. K. et al. RNA targeting unleashes indiscriminate nuclease activity of CRISPR-Cas12a2. Nature 613, 582–587 (2023).
-
Anastasia, A. et al. The DNA-PK inhibitor AZD7648 sensitizes patient-derived ovarian cancer xenografts to pegylated liposomal doxorubicin and olaparib, preventing abdominal metastases. Mol. Cancer Ther. 21, 555–567 (2022).
-
Suresh, S. et al. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break. Mol. Ther. 27, 109–109 (2019).
-
Zatreanu, D. et al. Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 3636 (2021).
-
Groelly, F. J., Fawkes, M., Dagg, R. A., Blackford, A. N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2023).
-
van Bussel, M. T. J. et al. A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor peposertib (formerly M3814) in patients with advanced solid tumours. Br. J. Cancer 124, 728–735 (2020).
-
Rodriguez-Berriguete, G. et al. Small-molecule poltheta inhibitors provide safe and effective tumor radiosensitization in preclinical models. Clin. Cancer Res 29, 1631–1642 (2023).
-
Yap, T. A. et al. Abstract CT248: AZD7648: a phase I/IIa first-in-human trial of a novel, potent and selective DNA-PK inhibitor in patients with advanced malignancies. Cancer Res. 80, CT248–CT248 (2020).
-
Riesenberg, S. & Maricic, T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat. Commun. 9, 2164 (2018).
-
Mora-Bermúdez, F. et al. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. Elife 5, https://doi.org/10.7554/eLife.18683 (2016).
-
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).
-
Renaud, G., Stenzel, U. & Kelso, J. LeeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141 (2014).
-
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
-
Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).
