References
-
Hora, F. F. et al. Nutritional parameters and performance of crossbred heifers fed with millet and BRS 716 biomass sorghum silages. J. Appl. Anim. Res. 51, 74–83. https://doi.org/10.1080/09712119.2022.2155172 (2023).
-
Pinho, R. M. A. et al. G. D. Sorghum cultivars of different purposes silage. Ciênc Rural. 45, 298–303. https://doi.org/10.1590/0103-8478cr20131532 (2015).
-
Santana, I. A. et al. Yield and nutritional value of sorghum genotype silages using azospirillum Brasilense in the Northern region of the state of Minas Gerais. Semin Ciênc Agrár. 43, 1721–1736. https://doi.org/10.5433/1679-0359.2022v43n4p1721 (2022).
-
Moura, M. M. A. et al. D. Assessment of sorghum genotypes for silage: nutritional value. Acta Scientiarum Anim. Sci. 46, e67788. https://doi.org/10.4025/actascianimsci.v46i1.67788 (2024).
-
Souza, J. F. et al. Yield and nutritional value of silage of different sorghum hybrids inoculated with azospirillum Brasilense. J. Appl. Anim. Res. 51, 424–433. https://doi.org/10.1080/09712119.2023.2216760 (2023).
-
Oliveira, R. F. et al. Productive and qualitative traits of sorghum genotypes used for silage under tropical conditions. Crops 4, 256–269. https://doi.org/10.3390/crops4020019 (2024).
-
Muck, R. E. et al. Silage review: recent advances and future uses of silage additives. J. Dairy. Sci. 101, 3980–4000. https://doi.org/10.3168/jds.2017-13839 (2018).
-
Silva, Y. A. et al. Chemical Composition, fermentation parameters and losses of silages from different hybrids of biomass sorghum. Grass Forage Sci. 80, e12706. https://doi.org/10.1111/gfs.12706 (2025).
-
Santos, H. G. et al. T. J. F. Sistema brasileiro de classificação de solos. (Embrapa, (2018).
-
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507 (2014).
-
Mendes, E. V. C. et al. Broom-type sorghum cultivars subject to planting densities: agroeconomic responses and forage potential. Ciênc Rural. 55, e20240437. https://doi.org/10.1590/0103-8478cr20240437 (2025).
-
Detmann, E., Rodrigues, J. P. P., Silva, T. E., Neto, B., Franco, M. & A. S. & O. Methods for Feed Analysis 3rd edn (Suprema, 2025).
-
Shukla, G. K. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29, 237–245. https://doi.org/10.1038/hdy.1972.87 (1972).
-
SAS Institute Inc. SAS® OnDemand for Academics: user’s guide (SAS Institute, 2014).
-
Cruz, C. D. Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 35, 271–276. https://doi.org/10.4025/actasciagron.v35i3.21251 (2013).
-
Piepho, H. P. Stability analysis using the SAS system. Agron. J. 91, 154–160. https://doi.org/10.2134/agronj1999.00021962009100010024x (1999).
-
Reckling, M. et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Dev. 41, 27. https://doi.org/10.1007/s13593-021-00681-4 (2021).
-
Figueiredo, J. M. M. D., Parrella, R. A. D. C. & Nunes, J. A. R. Genetic parameters and selection for multiple traits in sorghum for forage purposes. Crop Breed. Appl. Biotechnol. 24, e48122429. https://doi.org/10.1590/1984-70332024v24n2a22 (2024).
-
Bolsen, K. K. et al. Effect of silage additives on the microbial succession and fermentation process of alfalfa and corn silages. J. Dairy. Sci. 75, 3066–3083. https://doi.org/10.3168/jds.S0022-0302(92)78070-9 (1992).
-
Kung Jr, L., Shaver, R. D., Grant, R. J. & Schmidt, R. J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of dairy Science, 101, 4020–4033. (2018). https://doi.org/10.3168/jds.2017-13909 (2018).
-
Pryce, J. D. A modification of Barker-Summerson method for the determination of lactic acid. Analyst 94, 1151–1152. https://doi.org/10.1039/an9699401151 (1969).
-
Sniffen, C. J., O’Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70, 3562–3577. https://doi.org/10.2527/1992.70113562x (1992).
-
Valadares Filho, S. C., Saraiva, D. T., Benedeti, P. B., Silva, F. A. S. & Chizzotti, M. L. BR-CORTE: Exigências Nutricionais de Zebuínos Puros e Cruzados. https://doi.org/10.26626/978-85-8179-192-0.2023.B001 (Suprema, 2023).
-
Casali, A. O. et al. Estimation of fibrous compounds contents in ruminant feeds with bags made from different textiles. Rev. Bras. Zootec. 38, 130–138. https://doi.org/10.1590/S1516-35982009000100017 (2009).
-
Ørskov, E. R. & McDonald, I. The Estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499–503. https://doi.org/10.1017/S0021859600063048 (1979).
-
Alderman, G. & Blake, J. S. The energy and protein requirements according to AFRC (1993) of high genetic merit dairy cows. BSAP Occas Public. 19, 99–101. https://doi.org/10.1017/S0263967X00031864 (1995).
-
Mertens, D. R. & Loften, J. R. The effect of starch on forage fiber digestion kinetics in vitro. J. Dairy. Sci. 63, 1437–1446. https://doi.org/10.3168/jds.S0022-0302(80)83101-8 (1980).
-
Waldo, D. R., Smith, L. W. & Cox, E. L. Model of cellulose disappearance from the rumen. J. Dairy. Sci. 55, 125–129. https://doi.org/10.3168/jds.S0022-0302(72)85442-0 (1972).
-
Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd EdnAcademic Press,. (2011).
-
Grant, N. P., Toy, J. J., Funnell-Harris, D. L. & Sattler, S. E. Deleterious mutations predicted in the sorghum (Sorghum bicolor) maturity (Ma) and Dwarf (Dw) genes from whole-genome resequencing. Sci. Rep. 13, 16638. https://doi.org/10.1038/s41598-023-42306-8 (2023).
-
Castro, F. M. R., Lombardi, G. M. R., Nunes, J. A. R., Parrella, R. A. & Bruzi, A. T. Accumulation of biomass and lignocellulosic compounds in photoperiod-sensitive biomass sorghum genotypes. Biomass Bioener. 158, 106344. https://doi.org/10.1016/j.biombioe.2022.106344 (2022).
-
Diatta-Holgate, E., Bergsma, B. & Tuinstra, M. R. Mutations in the dwarf3 gene confer height stability in sorghum. Plant. Gen. 17, e20466. https://doi.org/10.1002/tpg2.20466 (2024).
-
Silva, P. H. F. et al. Agronomic responses and herbage nutritive value of elephant grass (Cenchrus purpureus) genotypes grown as monocrops and mixed with butterfly pea (Clitoria ternatea). Crop Pasture Sci. 74, 1210–1222. https://doi.org/10.1071/CP22397 (2023).
-
Hashimoto, S. et al. The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Sci. Rep. 11, 4532. https://doi.org/10.1038/s41598-021-84020-3 (2021).
-
Guerra, J. V. et al. Adaptability and stability of biomass sorghum genotypes using GGE biplot. Rev. Caatinga. 38, e12509. https://doi.org/10.1590/1983-21252025v3812509rc (2024).
-
Rodrigues, P. H. M., Pinedo, L. A., Meyer, P. M., da Silva, T. H. & Guimarães, I. C. D. S. B. Sorghum silage quality as determined by chemical–nutritional factors. Grass Forage Sci. 75, 462–473. https://doi.org/10.1111/gfs.12495 (2020).
-
Diogénes, L. V. et al. Effect of different additives on the quality of rehydrated corn grain silage: a systematic review. Ruminants 3, 425–444. https://doi.org/10.3390/ruminants3040035 (2023).
-
Anjos, A. N. A. et al. Protein and carbohydrate profiles of ‘Massai’ grass silage with pelleted citrus pulp and microbial inoculant. Pesq Agropec Bras. 57, e02732. https://doi.org/10.1590/S1678-3921.pab2022.v57.02732 (2022).
-
Fernandes, T., Paula, E. M., Sultana, H. & Ferraretto, L. F. Influence of sorghum cultivar, ensiling storage length, and microbial inoculation on fermentation profile, N fractions, ruminal in situ starch disappearance and aerobic stability of whole-plant sorghum silage. Anim. Feed Sci. Technol. 266, 114535. https://doi.org/10.1016/j.anifeedsci.2020.114535 (2020).
-
Silva, A. F. et al. Nutritional value, fermentation characteristics and aerobic stability of maize grain silage rehydrated with increasing levels of wet tomato byproduct. J. Anim. Feed Sci. 24, 121–130. https://doi.org/10.22358/jafs/192509/2024 (2025).
-
Lemos, M. F. et al. F. Grass size and butterfly pea inclusion modify the nutritional value of elephant grass silage. Pesq Agropec Bras. 56, e02409. https://doi.org/10.1590/S1678-3921.pab2021.v56.26948 (2021).
-
Hall, M. B. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 81, 3226–3232. https://doi.org/10.2527/2003.81123226x (2003).
-
Schofield, P., Pitt, R. E. & Pell, A. N. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 72, 2980–2991. https://doi.org/10.2527/1994.72112980x (1994).
-
Owen, F. G. Factors affecting nutritive value of corn and sorghum silage. J. Dairy. Sci. 50, 404–416. https://doi.org/10.3168/jds.S0022-0302(67)87435-6 (1967).
-
Behling Neto, A. et al. D. Nutritional value of sorghum silage of different purposes. Ciênc Agrotecnol. 41, 288–299. https://doi.org/10.1590/1413-70542017413038516 (2017).
-
Santana, O. I., Ramos, A. P., Duarte, J. I. S. & Arteaga, E. P. P. Forage production and rumen degradation kinetics of silage from brown midrib corn hybrids versus conventional corn hybrids. Rev. Mex Cienc. Pecu. 16, 575–592 (2025).
-
Hristov, A. N. et al. Effects of ensiling time on corn silage neutral detergent fiber degradability and relationship between laboratory fiber analyses and in vivo digestibility. J. Dairy. Sci. 103, 2333–2346. https://doi.org/10.3168/jds.2019-16917 (2020).
-
Peña, O. M., Velasquez, C., Ferreira, G. & Aguerre, M. J. Yield, nutritional composition, and in vitro ruminal digestibility of conventional and brown midrib (BMR) corn for silage as affected by planting population and harvest maturity. Agronomy 13, 1414. https://doi.org/10.3390/agronomy13051414 (2023).
-
Zhai, J. et al. Effects of Aspergillus Niger on cyanogenic glycosides removal and fermentation qualities of ratooning sorghum. Front. Microbiol. 14, 1128057. https://doi.org/10.3389/fmicb.2023.1128057 (2023).
