References
-
Hao, Z., Qi, W., Sun, J., Zhou, M. & Guo, N. Review: Research progress of adipose-derived stem cells in the treatment of chronic wounds. Front. Chem. https://doi.org/10.3389/FCHEM.2023.1094693 (2023).
-
Krzyszczyk, P., Schloss, R., Palmer, A. & Berthiaume, F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 9(MAY), 419. https://doi.org/10.3389/FPHYS.2018.00419 (2018).
-
Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: A cellular perspective. Physiol Rev. 99(1), 665–706. https://doi.org/10.1152/PHYSREV.00067.2017 (2019).
-
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells: The international society for cellular therapy position statement. Cytotherapy 8(4), 315–317. https://doi.org/10.1080/14653240600855905 (2006).
-
Hassanshahi, A. et al. Adipose-derived stem cells for wound healing. J. Cell Physiol. 234(6), 7903–7914. https://doi.org/10.1002/JCP.27922 (2019).
-
Burst, V. R. et al. Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp Nephrol. 114(3), e107–e116. https://doi.org/10.1159/000262318 (2010).
-
Kim, K., Bou-Ghannam, S., Thorp, H., Grainger, D. W. & Okano, T. Human mesenchymal stem cell sheets in xeno-free media for possible allogenic applications. Sci. Rep. 9(1), 1–12. https://doi.org/10.1038/s41598-019-50430-7 (2019).
-
Salazar-Noratto, G. E. et al. Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem Cells. 38(1), 22–33. https://doi.org/10.1002/STEM.3079 (2020).
-
Skog, M. et al. The effect of enzymatic digestion on cultured epithelial autografts. Cell Transpl. 28(5), 638. https://doi.org/10.1177/0963689719833305 (2019).
-
Miersch, C., Stange, K. & Röntgen, M. Effects of trypsinization and of a combined trypsin, collagenase, and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles. In Vitro Cell Dev. Biol. Anim. 54(6), 406–412. https://doi.org/10.1007/S11626-018-0263-5 (2018).
-
Kolf, C. M., Cho, E. & Tuan, R. S. Mesenchymal stromal cells: Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arth. Res. Ther. 9(1), 1–10. https://doi.org/10.1186/AR2116/FIGURES/3 (2007).
-
Du, S., Zeugolis, D. I. & O’Brien, T. Scaffold-based delivery of mesenchymal stromal cells to diabetic wounds. Stem Cell Res. Therapy 13(1), 1–19. https://doi.org/10.1186/S13287-022-03115-4 (2022).
-
Lin, Y. C. et al. Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater. 9(2), 5243–5250. https://doi.org/10.1016/J.ACTBIO.2012.09.028 (2013).
-
Ardeshirylajimi, A., Delgoshaie, M., Mirzaei, S. & Khojasteh, A. Different porosities of chitosan can influence the osteogenic differentiation potential of stem cells. J. Cell Biochem. 119(1), 625–633. https://doi.org/10.1002/JCB.26223 (2018).
-
Imashiro, C. & Shimizu, T. Fundamental technologies and recent advances of cell-sheet-based tissue engineering. Int. J. Mol. Sci. 22(1), 425. https://doi.org/10.3390/IJMS22010425 (2021).
-
Li, Y. et al. Bone marrow macrophage M2 polarization and adipose-derived stem cells osteogenic differentiation synergistically promote rehabilitation of bone damage. J. Cell Biochem. 120(12), 19891–19901. https://doi.org/10.1002/JCB.29297 (2019).
-
Chang, D. et al. Engineering of MSCs sheet for the prevention of myocardial ischemia and for left ventricle remodeling. Stem Cell Res. Ther. 14(1), 102. https://doi.org/10.1186/S13287-023-03322-7 (2023).
-
Sukho, P. et al. Effects of adipose stem cell sheets on colon anastomotic leakage in an experimental model: Proof of principle. Biomaterials 140, 69–78. https://doi.org/10.1016/J.BIOMATERIALS.2017.06.011 (2017).
-
Kim, K. et al. Allogeneic mesenchymal stem cell sheet therapy: A new frontier in drug delivery systems. J. Control. Release 330, 696–704. https://doi.org/10.1016/J.JCONREL.2020.12.028 (2021).
-
Masuda, S., Shimizu, T., Yamato, M. & Okano, T. Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev. 60(2), 277–285. https://doi.org/10.1016/J.ADDR.2007.08.031 (2008).
-
Venugopal, B., Shenoy, S. J., Mohan, S., Anil Kumar, P. R. & Kumary, T. V. Bioengineered corneal epithelial cell sheet from mesenchymal stem cells-A functional alternative to limbal stem cells for ocular surface reconstruction. J. Biomed. Mater. Res. B Appl. Biomater. 108(3), 1033–1045. https://doi.org/10.1002/JBM.B.34455 (2020).
-
Ohki, T. et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology https://doi.org/10.1053/J.GASTRO.2012.04.050 (2012).
-
Jia, W., He, W., Wang, G., Goldman, J. & Zhao, F. Enhancement of lymphangiogenesis by human mesenchymal stem cell sheet. Adv. Healthc. Mater. https://doi.org/10.1002/ADHM.202200464 (2022).
-
Yu, J., Wang, M. Y., Tai, H. C. & Cheng, N. C. Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation. Acta Biomater. 77, 191–200. https://doi.org/10.1016/J.ACTBIO.2018.07.022 (2018).
-
Yu, J., Tu, Y. K., Tang, Y. B. & Cheng, N. C. Stemness and transdifferentiation of adipose-derived stem cells using L-ascorbic acid 2-phosphate-induced cell sheet formation. Biomaterials 35(11), 3516–3526. https://doi.org/10.1016/J.BIOMATERIALS.2014.01.015 (2014).
-
Nagano, N., Hirano, Y., Kimura, M., Morita, H. & Yasukawa, T. Preclinical study of novel human allogeneic adipose tissue-derived mesenchymal stem cell sheets toward a first-in-human clinical trial for myopic chorioretinal atrophy. Stem Cell Res. Ther. https://doi.org/10.1186/S13287-024-04118-Z (2024).
-
細胞シート作製方法. Published online May 10, 2011.
-
Liu, L. & Shi, G. P. CD31: beyond a marker for endothelial cells. Cardiovasc Res. 94(1), 3–5. https://doi.org/10.1093/CVR/CVS108 (2012).
-
Li, Y. et al. Modified gelatin hydrogel nonwoven fabrics (Genocel) as a skin substitute in murine skin defects. Regen. Ther. 23, 44–51. https://doi.org/10.1016/J.RETH.2023.03.003 (2023).
-
Pan, Y. et al. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer. J. Hematol. Oncol. https://doi.org/10.1186/S13045-019-0822-6 (2019).
-
Sawaragi, E. et al. Comparisons of the effects of silk elastin and collagen sponges on wound healing in murine models. Regen Ther. 24, 385–397. https://doi.org/10.1016/J.RETH.2023.09.001 (2023).
-
O’Loughlin, A. et al. Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes 62(7), 2588–2594. https://doi.org/10.2337/DB12-1822 (2013).
-
Kondo, M., Kameishi, S., Grainger, D. W. & Okano, T. Novel therapies using cell sheets engineered from allogeneic mesenchymal stem/stromal cells. Emerg. Top. Life Sci. 4(6), 677–689. https://doi.org/10.1042/ETLS20200151 (2020).
-
Senk, A. & Djonov, V. Collagen fibers provide guidance cues for capillary regrowth during regenerative angiogenesis in zebrafish. Sci. Rep. https://doi.org/10.1038/S41598-021-98852-6 (2021).
-
Gardeazabal, L. & Izeta, A. Elastin and collagen fibres in cutaneous wound healing. Exp. Dermatol. https://doi.org/10.1111/EXD.15052 (2024).
-
Miyahara, Y. et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12(4), 459–465. https://doi.org/10.1038/NM1391 (2006).
-
Yang, J. et al. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials 26(33), 6415–6422. https://doi.org/10.1016/j.biomaterials.2005.04.061 (2005).
-
Wang, J. et al. Transplantation of mesenchymal stem cells attenuates acute liver failure in mice via an interleukin-4-dependent switch to the m2 macrophage anti-inflammatory phenotype. J. Clin. Transl. Hepatol. 10(4), 669–679. https://doi.org/10.14218/JCTH.2021.00127 (2022).
-
Da Silva, M. L., Bolontrade, M. F., Markoski, M. M., Dallagiovanna, B. & Alaniz, L. Improving the therapeutic ability of mesenchymal stem/stromal cells for the treatment of conditions influenced by immune cells. Stem Cells Int. https://doi.org/10.1155/2019/6820395 (2019).
-
Bou-Ghannam, S., Kim, K., Kondo, M., Grainger, D. W. & Okano, T. Mesenchymal stem cell sheet centrifuge-assisted layering augments pro-regenerative cytokine production. Cells 11(18), 2840. https://doi.org/10.3390/CELLS11182840/S1 (2022).
-
Sukho, P. et al. Human mesenchymal stromal cell sheets induce macrophages predominantly to an anti-inflammatory phenotype. Stem Cells Dev. 27(13), 922–934. https://doi.org/10.1089/SCD.2017.0275 (2018).
-
Takemoto, S. et al. Preparation of collagen/gelatin sponge scaffold for sustained release of bFGF. Tissue Eng. Part A. 14(10), 1629–1638. https://doi.org/10.1089/TEN.TEA.2007.0215/ASSET/IMAGES/LARGE/FIG-11.JPEG (2008).
-
Alexandrushkina, N. et al. Cell sheets from adipose tissue MSC induce healing of pressure ulcer and prevent fibrosis via trigger effects on granulation tissue growth and vascularization. Int. J. Mol. Sci. 21(15), 1–21. https://doi.org/10.3390/IJMS21155567 (2020).
-
Nakao, M. et al. Umbilical cord-derived mesenchymal stem cell sheets transplanted subcutaneously enhance cell retention and survival more than dissociated stem cell injections. Stem Cell Res. Ther. https://doi.org/10.1186/S13287-023-03593-0 (2023).
