Self-assembling multilayer MSC-sheet promotes wound healing increasing M2 macrophage polarization

self-assembling-multilayer-msc-sheet-promotes-wound-healing-increasing-m2-macrophage-polarization
Self-assembling multilayer MSC-sheet promotes wound healing increasing M2 macrophage polarization

References

  1. Hao, Z., Qi, W., Sun, J., Zhou, M. & Guo, N. Review: Research progress of adipose-derived stem cells in the treatment of chronic wounds. Front. Chem. https://doi.org/10.3389/FCHEM.2023.1094693 (2023).

    Google Scholar 

  2. Krzyszczyk, P., Schloss, R., Palmer, A. & Berthiaume, F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 9(MAY), 419. https://doi.org/10.3389/FPHYS.2018.00419 (2018).

    Google Scholar 

  3. Rodrigues, M., Kosaric, N., Bonham, C. A. & Gurtner, G. C. Wound healing: A cellular perspective. Physiol Rev. 99(1), 665–706. https://doi.org/10.1152/PHYSREV.00067.2017 (2019).

    Google Scholar 

  4. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells: The international society for cellular therapy position statement. Cytotherapy 8(4), 315–317. https://doi.org/10.1080/14653240600855905 (2006).

    Google Scholar 

  5. Hassanshahi, A. et al. Adipose-derived stem cells for wound healing. J. Cell Physiol. 234(6), 7903–7914. https://doi.org/10.1002/JCP.27922 (2019).

    Google Scholar 

  6. Burst, V. R. et al. Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp Nephrol. 114(3), e107–e116. https://doi.org/10.1159/000262318 (2010).

    Google Scholar 

  7. Kim, K., Bou-Ghannam, S., Thorp, H., Grainger, D. W. & Okano, T. Human mesenchymal stem cell sheets in xeno-free media for possible allogenic applications. Sci. Rep. 9(1), 1–12. https://doi.org/10.1038/s41598-019-50430-7 (2019).

    Google Scholar 

  8. Salazar-Noratto, G. E. et al. Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem Cells. 38(1), 22–33. https://doi.org/10.1002/STEM.3079 (2020).

    Google Scholar 

  9. Skog, M. et al. The effect of enzymatic digestion on cultured epithelial autografts. Cell Transpl. 28(5), 638. https://doi.org/10.1177/0963689719833305 (2019).

    Google Scholar 

  10. Miersch, C., Stange, K. & Röntgen, M. Effects of trypsinization and of a combined trypsin, collagenase, and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles. In Vitro Cell Dev. Biol. Anim. 54(6), 406–412. https://doi.org/10.1007/S11626-018-0263-5 (2018).

    Google Scholar 

  11. Kolf, C. M., Cho, E. & Tuan, R. S. Mesenchymal stromal cells: Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arth. Res. Ther. 9(1), 1–10. https://doi.org/10.1186/AR2116/FIGURES/3 (2007).

    Google Scholar 

  12. Du, S., Zeugolis, D. I. & O’Brien, T. Scaffold-based delivery of mesenchymal stromal cells to diabetic wounds. Stem Cell Res. Therapy 13(1), 1–19. https://doi.org/10.1186/S13287-022-03115-4 (2022).

    Google Scholar 

  13. Lin, Y. C. et al. Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater. 9(2), 5243–5250. https://doi.org/10.1016/J.ACTBIO.2012.09.028 (2013).

    Google Scholar 

  14. Ardeshirylajimi, A., Delgoshaie, M., Mirzaei, S. & Khojasteh, A. Different porosities of chitosan can influence the osteogenic differentiation potential of stem cells. J. Cell Biochem. 119(1), 625–633. https://doi.org/10.1002/JCB.26223 (2018).

    Google Scholar 

  15. Imashiro, C. & Shimizu, T. Fundamental technologies and recent advances of cell-sheet-based tissue engineering. Int. J. Mol. Sci. 22(1), 425. https://doi.org/10.3390/IJMS22010425 (2021).

    Google Scholar 

  16. Li, Y. et al. Bone marrow macrophage M2 polarization and adipose-derived stem cells osteogenic differentiation synergistically promote rehabilitation of bone damage. J. Cell Biochem. 120(12), 19891–19901. https://doi.org/10.1002/JCB.29297 (2019).

    Google Scholar 

  17. Chang, D. et al. Engineering of MSCs sheet for the prevention of myocardial ischemia and for left ventricle remodeling. Stem Cell Res. Ther. 14(1), 102. https://doi.org/10.1186/S13287-023-03322-7 (2023).

    Google Scholar 

  18. Sukho, P. et al. Effects of adipose stem cell sheets on colon anastomotic leakage in an experimental model: Proof of principle. Biomaterials 140, 69–78. https://doi.org/10.1016/J.BIOMATERIALS.2017.06.011 (2017).

    Google Scholar 

  19. Kim, K. et al. Allogeneic mesenchymal stem cell sheet therapy: A new frontier in drug delivery systems. J. Control. Release 330, 696–704. https://doi.org/10.1016/J.JCONREL.2020.12.028 (2021).

    Google Scholar 

  20. Masuda, S., Shimizu, T., Yamato, M. & Okano, T. Cell sheet engineering for heart tissue repair. Adv. Drug Deliv. Rev. 60(2), 277–285. https://doi.org/10.1016/J.ADDR.2007.08.031 (2008).

    Google Scholar 

  21. Venugopal, B., Shenoy, S. J., Mohan, S., Anil Kumar, P. R. & Kumary, T. V. Bioengineered corneal epithelial cell sheet from mesenchymal stem cells-A functional alternative to limbal stem cells for ocular surface reconstruction. J. Biomed. Mater. Res. B Appl. Biomater. 108(3), 1033–1045. https://doi.org/10.1002/JBM.B.34455 (2020).

    Google Scholar 

  22. Ohki, T. et al. Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology https://doi.org/10.1053/J.GASTRO.2012.04.050 (2012).

    Google Scholar 

  23. Jia, W., He, W., Wang, G., Goldman, J. & Zhao, F. Enhancement of lymphangiogenesis by human mesenchymal stem cell sheet. Adv. Healthc. Mater. https://doi.org/10.1002/ADHM.202200464 (2022).

    Google Scholar 

  24. Yu, J., Wang, M. Y., Tai, H. C. & Cheng, N. C. Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation. Acta Biomater. 77, 191–200. https://doi.org/10.1016/J.ACTBIO.2018.07.022 (2018).

    Google Scholar 

  25. Yu, J., Tu, Y. K., Tang, Y. B. & Cheng, N. C. Stemness and transdifferentiation of adipose-derived stem cells using L-ascorbic acid 2-phosphate-induced cell sheet formation. Biomaterials 35(11), 3516–3526. https://doi.org/10.1016/J.BIOMATERIALS.2014.01.015 (2014).

    Google Scholar 

  26. Nagano, N., Hirano, Y., Kimura, M., Morita, H. & Yasukawa, T. Preclinical study of novel human allogeneic adipose tissue-derived mesenchymal stem cell sheets toward a first-in-human clinical trial for myopic chorioretinal atrophy. Stem Cell Res. Ther. https://doi.org/10.1186/S13287-024-04118-Z (2024).

    Google Scholar 

  27. 細胞シート作製方法. Published online May 10, 2011.

  28. Liu, L. & Shi, G. P. CD31: beyond a marker for endothelial cells. Cardiovasc Res. 94(1), 3–5. https://doi.org/10.1093/CVR/CVS108 (2012).

    Google Scholar 

  29. Li, Y. et al. Modified gelatin hydrogel nonwoven fabrics (Genocel) as a skin substitute in murine skin defects. Regen. Ther. 23, 44–51. https://doi.org/10.1016/J.RETH.2023.03.003 (2023).

    Google Scholar 

  30. Pan, Y. et al. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer. J. Hematol. Oncol. https://doi.org/10.1186/S13045-019-0822-6 (2019).

    Google Scholar 

  31. Sawaragi, E. et al. Comparisons of the effects of silk elastin and collagen sponges on wound healing in murine models. Regen Ther. 24, 385–397. https://doi.org/10.1016/J.RETH.2023.09.001 (2023).

    Google Scholar 

  32. O’Loughlin, A. et al. Topical administration of allogeneic mesenchymal stromal cells seeded in a collagen scaffold augments wound healing and increases angiogenesis in the diabetic rabbit ulcer. Diabetes 62(7), 2588–2594. https://doi.org/10.2337/DB12-1822 (2013).

    Google Scholar 

  33. Kondo, M., Kameishi, S., Grainger, D. W. & Okano, T. Novel therapies using cell sheets engineered from allogeneic mesenchymal stem/stromal cells. Emerg. Top. Life Sci. 4(6), 677–689. https://doi.org/10.1042/ETLS20200151 (2020).

    Google Scholar 

  34. Senk, A. & Djonov, V. Collagen fibers provide guidance cues for capillary regrowth during regenerative angiogenesis in zebrafish. Sci. Rep. https://doi.org/10.1038/S41598-021-98852-6 (2021).

    Google Scholar 

  35. Gardeazabal, L. & Izeta, A. Elastin and collagen fibres in cutaneous wound healing. Exp. Dermatol. https://doi.org/10.1111/EXD.15052 (2024).

    Google Scholar 

  36. Miyahara, Y. et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12(4), 459–465. https://doi.org/10.1038/NM1391 (2006).

    Google Scholar 

  37. Yang, J. et al. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials 26(33), 6415–6422. https://doi.org/10.1016/j.biomaterials.2005.04.061 (2005).

    Google Scholar 

  38. Wang, J. et al. Transplantation of mesenchymal stem cells attenuates acute liver failure in mice via an interleukin-4-dependent switch to the m2 macrophage anti-inflammatory phenotype. J. Clin. Transl. Hepatol. 10(4), 669–679. https://doi.org/10.14218/JCTH.2021.00127 (2022).

    Google Scholar 

  39. Da Silva, M. L., Bolontrade, M. F., Markoski, M. M., Dallagiovanna, B. & Alaniz, L. Improving the therapeutic ability of mesenchymal stem/stromal cells for the treatment of conditions influenced by immune cells. Stem Cells Int. https://doi.org/10.1155/2019/6820395 (2019).

    Google Scholar 

  40. Bou-Ghannam, S., Kim, K., Kondo, M., Grainger, D. W. & Okano, T. Mesenchymal stem cell sheet centrifuge-assisted layering augments pro-regenerative cytokine production. Cells 11(18), 2840. https://doi.org/10.3390/CELLS11182840/S1 (2022).

    Google Scholar 

  41. Sukho, P. et al. Human mesenchymal stromal cell sheets induce macrophages predominantly to an anti-inflammatory phenotype. Stem Cells Dev. 27(13), 922–934. https://doi.org/10.1089/SCD.2017.0275 (2018).

    Google Scholar 

  42. Takemoto, S. et al. Preparation of collagen/gelatin sponge scaffold for sustained release of bFGF. Tissue Eng. Part A. 14(10), 1629–1638. https://doi.org/10.1089/TEN.TEA.2007.0215/ASSET/IMAGES/LARGE/FIG-11.JPEG (2008).

    Google Scholar 

  43. Alexandrushkina, N. et al. Cell sheets from adipose tissue MSC induce healing of pressure ulcer and prevent fibrosis via trigger effects on granulation tissue growth and vascularization. Int. J. Mol. Sci. 21(15), 1–21. https://doi.org/10.3390/IJMS21155567 (2020).

    Google Scholar 

  44. Nakao, M. et al. Umbilical cord-derived mesenchymal stem cell sheets transplanted subcutaneously enhance cell retention and survival more than dissociated stem cell injections. Stem Cell Res. Ther. https://doi.org/10.1186/S13287-023-03593-0 (2023).

    Google Scholar 

Download references