References
-
Moni, S. S. et al. Advancements in vaccine adjuvants: the journey from alum to nano formulations. Vaccines 11, https://doi.org/10.3390/vaccines11111704 (2023).
-
Facciolà, A., Visalli, G., Laganà, A. & Di Pietro, A. An overview of vaccine adjuvants: current evidence and future perspectives. Vaccines 10, https://doi.org/10.3390/vaccines10050819 (2022).
-
Lavelle, E. C. & McEntee, C. P. Vaccine adjuvants: tailoring innate recognition to send the right message. Immunity 57, 772–789 (2024).
-
Mata-Haro, V. et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316, 1628–1632 (2007).
-
Facchini, F. A. et al. Synthetic glycolipids as molecular vaccine adjuvants: mechanism of action in human cells and in vivo activity. J. Med. Chem. 64, 12261–12272 (2021).
-
Kong, Q. et al. Salmonella synthesizing 1-dephosphorylated [corrected] lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J. Immunol 187, 412–423 (2011).
-
Swain, B. & Miryala, K. R. NOD-like receptors in fish: evolution, structure, immune signaling, and targeting for aquaculture vaccine adjuvants. Front. Immunol. 16, 1665071 (2025).
-
Chen, R. et al. Pattern recognition receptors: function, regulation and therapeutic potential. Signal Transduct. Target Ther. 10, 216 (2025).
-
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen Recognition and Innate Immunity. Cell 124, 783–801 (2006).
-
Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).
-
Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291 (2021).
-
Zhao, T. et al. Vaccine adjuvants: mechanisms and platforms. Signal Transduct. Target. Ther. 8, 283 (2023).
-
Guo, Q. et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct. Target. Ther. 9, 53 (2024).
-
P.ulendran, B., P., S. A. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).
-
Sinani, G. & Şenel, S. Advances in vaccine adjuvant development and future perspectives. Drug Deliv. 32, 2517137 (2025).
-
Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).
-
McKee, A. S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183, 4403–4414 (2009).
-
Kong, W., Brovold, M., Koeneman, B. A., Clark-Curtiss, J. & Curtiss, R. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc. Natl. Acad. Sci. 109, 19414–19419 (2012).
-
Swain, B., Campodonico, V. A. & Curtiss, R., 3rd. Recombinant Attenuated Edwardsiella piscicida Vaccine Displaying Regulated Lysis to Confer Biological Containment and Protect Catfish against Edwardsiellosis. Vaccines 11, 1470 (2023).
-
Wang, S., Kong, Q. & Curtiss, R. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb. Pathog. 58, 17–28 (2013).
-
Swain, B., Powell, C. T. & Curtiss, R. 3rd. Construction and evaluation of recombinant attenuated edwardsiella piscicida vaccine (RAEV) vector system encoding ichthyophthirius multifiliis (Ich) antigen IAG52B. Front. Immunol. 12, 802760 (2021).
-
Wei, Y. et al. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans. Int. J. Oral. Sci. 8, 231–238 (2016).
-
Xin, W. et al. The Asd+-DadB+ dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated salmonella vaccine. Infect. Immun. 80, 3621–3633 (2012).
-
Kong, Q. et al. Salmonella synthesizing 1-monophosphorylated lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J. Immunol. 187, 412–423 (2011).
-
Kawasaki, K., Ernst, R. K. & Miller, S. I. 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J. Biol. Chem. 279, 20044–20048 (2004).
-
Gunn, J. S. et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol. Microbiol. 27, 1171–1182 (1998).
-
Needham, B. D. & Trent, M. S. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 11, 467–481 (2013).
-
Kong, Q. et al. Phosphate groups of lipid A are essential for Salmonella enterica serovar Typhimurium virulence and affect innate and adaptive immunity. Infect. Immun. 80, 3215–3224 (2012).
-
Cunningham, A. F. et al. Responses to the soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Th1. Eur. J. Immunol. 34, 2986–2995 (2004).
-
Macnab, R. M. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26, 131–158 (1992).
-
Silverman, M. & Simon, M. Phase variation: genetic analysis of switching mutants. Cell 19, 845–854 (1980).
-
Beuzón, C. R. et al. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19, 3235–3249 (2000).
-
Brawn, L. C., Hayward, R. D. & Koronakis, V. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1, 63–75 (2007).
-
Raetz, C. R. H. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).
-
Hur, J., Lee, J. & John, H. Enhancement of immune responses by an attenuated salmonella enterica serovar typhimurium strain secreting an Escherichia coli heat-labile enterotoxin b subunit protein as an adjuvant for a live salmonella vaccine candidate. Clin. Vaccin. Immunol. 18, 203–209 (2011).
-
Galen, J. E., Wahid, R. & Buskirk, A. D. Strategies for enhancement of live-attenuated salmonella-based carrier vaccine immunogenicity. Vaccines 9, 162 (2021).
-
Sirard, J. C., Niedergang, F. & Kraehenbuhl, J. P. Live attenuated Salmonella: a paradigm of mucosal vaccines. Immunol. Rev. 171, 5–26 (1999).
-
Kong, Q. et al. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of salmonella enterica serovar typhimurium. Infect. Immun. 79, 4227–4239 (2011).
-
Hassan, J. O. & Curtiss, R. Virulent Salmonella typhimurium-induced lymphocyte depletion and immunosuppression in chickens. Infect. Immun. 62, 2027–2036 (1994).
-
Kennedy, M. J. et al. Attenuation and immunogenicity of Δcya Δcrp derivatives of salmonella choleraesuis in pigs. Infect. Immun. 67, 4628–4636 (1999).
-
Kong, W. et al. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment. Proc. Natl. Acad. Sci. USA 105, 9361–9366 (2008).
-
Kong, W. et al. Mucosal delivery of a self-destructing salmonella-based vaccine inducing immunity against eimeria. Avian Dis. 64, 254–268 (2020).
-
Wang, S. et al. A triple-sugar regulated Salmonella vaccine protects against Clostridium perfringens-induced necrotic enteritis in broiler chickens. Poult. Sci. 101, 101592 (2022).
-
Matsuda, S., Haneda, T., Saito, H., Miki, T. & Okada, N. Salmonella enterica Effectors SifA, SpvB, SseF, SseJ, and SteA contribute to type III secretion system 1-independent inflammation in a streptomycin-pretreated mouse model of colitis. Infect. Immun. 87, https://doi.org/10.1128/iai.00872-18 (2019).
-
Yang, L. et al. Deficiency in the msbB gene reduced the salmonella typhimurium virulence through mechanisms beyond LPS modification. Microorganisms 13, 2510 (2025).
-
Stepien, T. A. et al. Nuclear factor kappa B-dependent persistence of Salmonella Typhi and Paratyphi in human macrophages. mBio 15, e0045424 (2024).
-
Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).
-
Graham, S. V. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol. 5, 1493–1506 (2010).
-
Hajam, I. A., Dar, P. A., Shahnawaz, I., Jaume, J. C. & Lee, J. H. Bacterial flagellin—a potent immunomodulatory agent. Exp. Mol. Med. 49, e373–e373 (2017).
-
Cui, B. et al. Flagellin as a vaccine adjuvant. Expert Rev. Vaccines 17, 335–349 (2018).
-
Pasetti, M. F., Simon, J. K., Sztein, M. B. & Levine, M. M. Immunology of gut mucosal vaccines. Immunol. Rev. 239, 125–148 (2011).
-
Holmgren, J. & Svennerholm, A.-M. Vaccines against mucosal infections. Curr. Opin. Immunol. 24, 343–353 (2012).
-
Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).
-
Moyle, P. M. & Toth, I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 8, 360–376 (2013).
-
Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).
-
Rizzo, C. et al. Cross-reactive antibody responses to the 2009 A/H1N1v influenza virus in the Italian population in the pre-pandemic period. Vaccine 28, 3558–3562 (2010).
-
Zhu, Q. et al. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: Implications for vaccines. Proc. Natl. Acad. Sci. 105, 16260–16265 (2008).
-
In brief. Nat. Rev. Immunol. 10, 677–677 (2010).
-
Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).
-
Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K. & Girardin, S. E. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9–23 (2014).
-
Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597–1608 (2013).
-
Chen, J. et al. Trained immunity modulators: a new frontier in immunoregulation and disease intervention. J. Adv. Res. https://doi.org/10.1016/j.jare.2025.09.029 (2025).
-
Netea, M. G. et al. Trained immunity: aprogram of innate immune memory in health and disease. Science 352, aaf1098 (2016).
-
Moliva, J. I., Turner, J. & Torrelles, J. B. Immune responses to bacillus calmette-guérin vaccination: why do they fail to protect against Mycobacterium tuberculosis?. Front. Immunol. 8, 407 (2017).
-
Chen, J. et al. BCG-induced trained immunity: history, mechanisms and potential applications. J. Transl. Med. 21, 106 (2023).
-
Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
-
Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. today 17, 138–146 (1996).
-
Du, J. & Sun, H. Co-expression network analysis identifies innate immune signatures for Albizia julibrissin saponin active fraction-adjuvanted avian influenza vaccine. Int. Immunopharmacol. 93, 107417 (2021).
-
Kazmin, D. et al. Memory-like innate response to booster vaccination with MF-59 adjuvanted influenza vaccine in children. npj Vaccines 8, 100 (2023).
-
Zhou, R., Sun, K., Xie, X., Yin, F. & Galindo-Villegas, J. Integrated transcriptomic and immune enzymatic analyses uncover coordinated immunometabolic responses in large yellow croaker (Larimichthys crocea) to Metanophrys sp. infection. Front. Immunol. ume 16, 2025 (2025).
-
Gram, A. M. et al. Salmonella flagellin activates NAIP/NLRC4 and canonical NLRP3 inflammasomes in human macrophages. J. Immunol. 206, 631–640 (2021).
-
Li, Y. et al. Salmonella-NLRP3 inflammasome crosstalk: host defense activation versus bacterial immune evasion strategies. J. Inflamm. Res. 18, 5133–5148 (2025).
-
Maisonneuve, C., Bertholet, S., Philpott, D. J. & De Gregorio, E. Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc. Natl. Acad. Sci. USA 111, 12294–12299 (2014).
-
Caruso, R., Warner, N., Inohara, N. & Núñez, G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41, 898–908 (2014).
-
Swain, B. & Miryala, K. R. NOD-like receptors in fish: evolution, structure, immune signaling, and targeting for aquaculture vaccine adjuvants. Front. Immunol. ume 16, 2025 (2025).
-
Curtiss, R. 3rd & Hassan, J. O. Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry. Vet. Immunol. Immunopathol. 54, 365–372 (1996).
-
Swain, B., Powell, C. T. & Curtiss, R. Pathogenicity and immunogenicity of Edwardsiella piscicida ferric uptake regulator (fur) mutations in zebrafish. Fish. Shellfish Immunol. 107, 497–510 (2020).
-
Swain, B., Powell, C. T. & Curtiss, R. 3rd. Virulence, immunogenicity and live vaccine potential of aroA and phoP mutants of Edwardsiella piscicida in zebrafish. Micro Pathog. 162, 105355 (2022).
-
Roland, K., Curtiss, R. 3rd & Sizemore, D. Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis. 43, 429–441 (1999).
-
Swain, B., Campodonico, V. A. & Curtiss, R. Recombinant attenuated edwardsiella piscicida vaccine displaying regulated lysis to confer biological containment and protect catfish against edwardsiellosis. Vaccines 11, 1470 (2023).
-
Hitchcock, P. J. & Brown, T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 154, 269–277 (1983).
-
Swain, B., Powell, C. T. & Curtiss, R. Virulence, immunogenicity and live vaccine potential of aroA and phoP mutants of Edwardsiella piscicida in zebrafish. Microb. Pathog. 162, 105355 (2022).
-
Nakayama, K., Kelly, S. M. & Curtiss III, R. Construction of an Asd+ expression-cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. BioTechnol. 6, 693–697 (1988).
-
Galan, J. E., Nakayama, K. & Curtiss, R., 3rd. Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94, 29–35 (1990).
-
Xin, W. et al. The Asd(+)-DadB(+) dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine. Infect. Immun. 80, 3621–3633 (2012).
-
Wasserman, S. A., Walsh, C. T. & Botstein, D. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J. Bacteriol. 153, 1439–1450 (1983).
-
Nempont, C. et al. Deletion of flagellin’s hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity. J. Immunol. 181, 2036–2043 (2008).
-
Wang, X., Karbarz, M. J., McGrath, S. C., Cotter, R. J. & Raetz, C. R. MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of Francisella novicida LpxE expressed in Escherichia coli. J. Biol. Chem. 279, 49470–49478 (2004).
-
Raetz, C. R., Reynolds, C. M., Trent, M. S. & Bishop, R. E. Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 76, 295–329 (2007).
-
Bonifield, H. R. & Hughes, K. T. Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J. Bacteriol. 185, 3567–3574 (2003).
-
Kong, Q. et al. Palmitoylation state impacts induction of innate and acquired immunity by the Salmonella enterica serovar typhimurium msbB mutant. Infect. Immun. 79, 5027–5038 (2011).
-
Mullally, C. et al. Novel small molecules that increase the susceptibility of Neisseria gonorrhoeae to cationic antimicrobial peptides by inhibiting lipid A phosphoethanolamine transferase. J. Antimicrob. Chemother. 77, 2441–2447 (2022).
-
Ohlson, M. B. et al. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4, 434–446 (2008).
-
Kong, Q., Liu, Q., Jansen, A. M. & Curtiss, R. 3rd. Regulated delayed expression of rfc enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Vaccine 28, 6094–6103 (2010).
