Sesquiterpene lactones in micropropagated Arnica montana shoots after elicitation—insights into metabolite accumulation and transcriptional regulation

sesquiterpene-lactones-in-micropropagated-arnica-montana-shoots-after-elicitation—insights-into-metabolite-accumulation-and-transcriptional-regulation
Sesquiterpene lactones in micropropagated Arnica montana shoots after elicitation—insights into metabolite accumulation and transcriptional regulation

References

  1. Vera, M. et al. Living at the edge: population differentiation in endangered Arnica Montana from NW Iberian Peninsula. Plant. Syst. Evol. 306, 1–14. https://doi.org/10.1007/s00606-020-01673-9 (2020).

    Google Scholar 

  2. Li, Y., Chen, F., Li, Z., Li, C. & Zhang, Y. Identification and functional characterization of sesquiterpene synthases from Xanthium strumarium. Plant. Cell. Physiol. 57, 630–641. https://doi.org/10.1093/pcp/pcw019 (2016).

    Google Scholar 

  3. Lyss, G., Schmidt, T. J., Merfort, I. & Pahl, H. L. Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-kappaB. Biol. Chem. 378, 951–961. https://doi.org/10.1515/bchm.1997.378.9.951 (1997).

    Google Scholar 

  4. Kriplani, P., Guarve, K. & Baghael, U. S. Arnica Montana L.–a plant of healing. J. Pharm. Pharmacol. 69 (8), 925–945 (2017).

    Google Scholar 

  5. Greinwald, A. et al. Soil and vegetation drive sesquiterpene lactone content and profile in Arnica Montana L. Flower heads from Apuseni-Mountains, Romania. Front. Plant. Sci. 13, 813939. https://doi.org/10.3389/fpls.2022.813939 (2022).

    Google Scholar 

  6. Schmidt, T. J. Doesn’t origin matter? Plants 12, 3532. https://doi.org/10.3390/plants12203532 (2023). Arnica montana L.

    Google Scholar 

  7. Atanasov, A. G. et al. Discovery and resupply of Pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 33 (8), 1582–1614 (2015).

    Google Scholar 

  8. Petrova, M. et al. Antioxidant capacity and accumulation of caffeoylquinic acids in Arnica Montana L. in vitro shoots after elicitation with yeast extract or Salicylic acid. Plants 14 (6), 967 (2025).

    Google Scholar 

  9. Kohli, S. K. et al. Interaction of 24-epibrassinolide and Salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ. Sci. Pollut Res. 25, 15159–15173. https://doi.org/10.1007/s11356-018-1742-7 (2018).

    Google Scholar 

  10. Halder, M., Sarkar, S., Jha, S. & Elicitation A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng. Life Sci. 19, 880–895. https://doi.org/10.1002/elsc.201900058 (2019).

    Google Scholar 

  11. Zhai, X. et al. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit. Rev. Microbiol. 43, 238–261. https://doi.org/10.1080/1040841X.2016.1201041 (2016).

    Google Scholar 

  12. Perassolo, M., Cardillo, A. B., Busto, V. D., Giulietti, A. M. & Talou, J. R. Biosynthesis of sesquiterpene lactones in plants and metabolic engineering for their biotechnological production. In: (eds Sülsen, V. & Martino, V.) Sesquiterpene Lactones. Springer, Cham., DOI: https://doi.org/10.1007/978-3-319-78274-4_4 (2018).

    Google Scholar 

  13. Majdi, M., Abdollahi, M. R. & Maroufi, A. Parthenolide accumulation and expression of genes related to parthenolide biosynthesis affected by exogenous application of Methyl jasmonate and Salicylic acid in Tanacetum parthenium. Plant. Cell. Rep. 34, 1909–1918. https://doi.org/10.1007/s00299-015-1837-2 (2015).

    Google Scholar 

  14. Vranová, E., Coman, D. & Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant. Biol. 64, 665–700. https://doi.org/10.1146/annurev-arplant-050312-120116 (2013).

    Google Scholar 

  15. Parafiniuk, A. et al. Localization of sesquiterpene lactones biosynthesis in flowers of Arnica taxa. Molecules 28, 4379. https://doi.org/10.3390/molecules28114379 (2023).

    Google Scholar 

  16. de Kraker, J. W., Franssen, M. C., de Groot, A., König, W. A. & Bouwmeester, H. J. (+)-Germacrene A biosynthesis: the committed step in the biosynthesis of bitter sesquiterpene lactones in Chicory. Plant Physiol. 117, 1381–1392. https://doi.org/10.1104/pp.117.4.1381 (1998).

    Google Scholar 

  17. Bennett, M. H., Mansfield, J. W., Lewis, M. J. & Beale, M. H. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L). Phytochem 60, 255–261. https://doi.org/10.1016/S0031-9422(02)00103-6 (2002).

    Google Scholar 

  18. Bertea, C. M. et al. Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch. Biochem. Biophys. 448, 3–12. https://doi.org/10.1016/j.abb.2006.02.026 (2006).

    Google Scholar 

  19. Liu, Q. et al. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab. Eng. 23, 145–153. https://doi.org/10.1016/j.ymben.2014.03.005 (2014).

    Google Scholar 

  20. Göpfert, J. C., MacNevin, G., Ro, D. K. & Spring, O. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant. Biol. 9 86 https://doi.org/10.1186/1471-2229-9-86 (2009).

  21. Nguyen, T. D. et al. Discovery of germacrene A synthases in Barnadesia spinosa: the first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae. Biochem. Biophys. Res. Commun. 479, 622–627. https://doi.org/10.1016/j.bbrc.2016.09.165 (2016).

    Google Scholar 

  22. Frey, M. et al. Sesquiterpene Lactones – Insights into Biosynthesis, regulation and signalling roles. Crit. Rev. Plant. Sci. 43, 131–157. https://doi.org/10.1080/07352689.2024.2307240 (2024).

    Google Scholar 

  23. Parafiniuk, A. et al. Impact of elicitors and light on biosynthesis of sesquiterpene lactones in tissue culture of Arnica Montana and its variety Arbo. Front. Plant. Sci. 16, 1611849. https://doi.org/10.3389/fpls.2025.1611849 (2025).

    Google Scholar 

  24. Perry, N. B. Sesquiterpene lactones in Arnica montana: Helenalin and Dihydrohelenalin chemotypes in Spain. Planta Med. 75, 660–666. https://doi.org/10.1055/s-0029-1185362 (2009).

    Google Scholar 

  25. Petrova, M., Zayova, E., Todorova, M. & Stanilova, M. Enhancement of Arnica Montana in vitro shoot multiplication and sesquiterpene lactones production using temporary immersion system. IJPSR 5, 5170–5176. https://doi.org/10.13040/IJPSR.0975-8232.5(12).5170-76 (2014).

    Google Scholar 

  26. Schmidt, T. J., Bomme, U. & Alfermann, A. W. Sesquiterpene lactone content in leaves of in vitro and field cultivated Arnica Montana. Planta Med. 64, 268–270. https://doi.org/10.1055/s-2006-957423 (1998).

    Google Scholar 

  27. Baldi, A. & Dixit, V. K. Yield enhancement strategies for Artemisinin production by suspension cultures of Artemisia annua. Bioresour Technol. 99 (11), 4609–4614. https://doi.org/10.1016/j.biortech.2007.06.061 (2008).

    Google Scholar 

  28. Putalun, W., Luealon, W., De-Eknamkul, W., Tanaka, H. & Shoyama, Y. Improvement of Artemisinin production by Chitosan in hairy root cultures of Artemisia annua L. Biotechnol. Lett. 29, 1143–1146. https://doi.org/10.1007/s10529-007-9368-8 (2007).

    Google Scholar 

  29. Patra, N., Srivastava, A. K. & Sharma, S. Study of various factors for enhancement of Artemisinin in Artemisia annua hairy roots. Int. J. Chem. Eng. Appl. 4, 157–160 (2013).

    Google Scholar 

  30. Pourianezhad, F. et al. Effects of combined elicitors on parthenolide production and expression of parthenolide synthase (TpPTS) in Tanacetum parthenium hairy root culture. Plant. Biotechnol. Rep. 13, 211–218. https://doi.org/10.1007/s11816-019-00526-3 (2019).

    Google Scholar 

  31. Malarz, J., Stojakowska, A. & Kisiel, W. Effect of Methyl jasmonate and Salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiol. Plant. 29, 127–132. https://doi.org/10.1007/s11738-006-0016-z (2007).

    Google Scholar 

  32. Laezza, C. et al. Use of yeast extract to elicit a pulp-derived callus cultures from Annurca Apple and potentiate its biological activity. J. Funct. Foods. 112, 105988. https://doi.org/10.1016/j.jff.2023.105988 (2024).

    Google Scholar 

  33. Petrova, M., Miladinova-Georgieva, K. & Geneva, M. Influence of abiotic and biotic elicitors on organogenesis, biomass accumulation, and production of key secondary metabolites in Asteraceae plants. Int. J. Mol. Sci. 25 (8), 4197. https://doi.org/10.3390/ijms25084197 (2024).

    Google Scholar 

  34. Li, D. et al. Impact of methyl jasmonate on terpenoid biosynthesis and functional analysis of sesquiterpene synthesis genes in Schizonepeta tenuifolia. Plants, 13, (1920). https://doi.org/10.3390/plants13141920 (2024).

  35. Kwon, M. et al. Germacrene A synthases for sesquiterpene lactone biosynthesis are expressed in vascular parenchyma cells neighboring laticifers in lettuce. Plants 11 (9), 1192. https://doi.org/10.3390/plants11091192 (2022).

    Google Scholar 

  36. Li, C. et al. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. Plant J. 121 (2), e17199. https://doi.org/10.1111/tpj.17199 (2025).

    Google Scholar 

  37. Sozoniuk, M., Petrova, M., Mishev, K., Miladinova-Georgieva, K. & Geneva, M. Identification and validation of reference genes with stable expression under elicitor treatments of the medicinal plant Arnica Montana L. BMC Plant Biol. 25 (1), 546. https://doi.org/10.1186/s12870-025-06557-z (2025).

    Google Scholar 

  38. Lu, X., Tang, K. & Li, P. Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front. Plant. Sci. 7, 1647. https://doi.org/10.3389/fpls.2016.01647 (2016).

    Google Scholar 

  39. Bansal, S. et al. HMG-CoA reductase from Camphor Tulsi (Ocimum kilimandscharicum) regulated MVA dependent biosynthesis of diverse terpenoids in homologous and heterologous plant systems. Sci. Rep. 8, 3547. https://doi.org/10.1038/s41598-017-17153-z (2018).

    Google Scholar 

  40. Wang, Q. J., Zheng, L. P., Zhao, P. F., Zhao, Y. L. & Wang, J. W. Cloning and characterization of an elicitor-responsive gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase involved in 20-hydroxyecdysone production in cell cultures of Cyanotis arachnoidea. Plant. Physiol. Biochem. 84, 1–9. https://doi.org/10.1016/j.plaphy.2014.08.021 (2014).

    Google Scholar 

  41. Sharma, S. N., Jha, Z., Sinha, R. K. & Geda, A. K. Jasmonate-induced biosynthesis of Andrographolide in Andrographis paniculata. Physiol. Plant. 153, 221–229. https://doi.org/10.1111/ppl.12252 (2015).

    Google Scholar 

  42. Wang, J. et al. Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to Methyl jasmonate in Panax quinquefolium adventitious root. Sci. Rep. 6, 37263. https://doi.org/10.1038/srep37263 (2016).

    Google Scholar 

  43. Dong, G. et al. Transcriptome analysis of Taraxacum kok-saghyz reveals the role of exogenous Methyl jasmonate in regulating rubber biosynthesis and drought tolerance. Gene 867, 147346. https://doi.org/10.1016/j.gene.2023.147346 (2023).

    Google Scholar 

  44. Cao, X. et al. Transcriptome sequencing of MeJA-Induced Taraxacum Koksaghyz Rodin to identify genes related to rubber formation. Sci. Rep. 7, 15697. https://doi.org/10.1038/s41598-017-14890-z (2017).

    Google Scholar 

  45. Wang, Q., Quan, S. & Xiao, H. Towards efficient terpenoid biosynthesis: manipulating IPP and DMAPP supply. Bioresour Bioprocess. 6, 1–13. https://doi.org/10.1186/s40643-019-0242-z (2019).

    Google Scholar 

  46. Chen, X. et al. Full-length transcriptome sequencing and Methyl jasmonate-induced expression profile analysis of genes related to Patchoulol biosynthesis and regulation in Pogostemon Cablin. BMC Plant. Biol. 19, 266. https://doi.org/10.1186/s12870-019-1884-x (2019).

    Google Scholar 

  47. Wei, Q. et al. Transcriptome analysis reveals regulation mechanism of Methyl jasmonate-induced terpenes biosynthesis in Curcuma Wenyujin. PLoS One. 17 (6), e0270309. https://doi.org/10.1371/journal.pone.0270309 (2022).

    Google Scholar 

  48. Majdi, M., Malekzadeh-Mashhady, A., Maroufi, A. & Crocoll, C. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors. Plant. Physiol. Biochem. 115, 152–162. https://doi.org/10.1016/j.plaphy.2017.03.016 (2017).

    Google Scholar 

  49. Liu, J. P. et al. Transcriptome analysis of Hevea Brasiliensis in response to exogenous Methyl jasmonate provides novel insights into regulation of jasmonate-elicited rubber biosynthesis. Physiol. Mol. Biol. Plants. 24, 349–358. https://doi.org/10.1007/s12298-018-0529-0 (2018).

    Google Scholar 

  50. Szkopińska, A. & Płochocka, D. Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim. Pol. 52, 45–55. https://doi.org/10.18388/abp.2005_3485 (2005).

    Google Scholar 

  51. Kajiura, H. et al. Two Eucommia Farnesyl diphosphate synthases exhibit distinct enzymatic properties leading to end product preferences. Biochimie 139, 95–106. https://doi.org/10.1016/j.biochi.2017.05.001 (2017).

    Google Scholar 

  52. Kim, O. T. et al. Molecular characterization of ginseng Farnesyl diphosphate synthase gene and its up-regulation by Methyl jasmonate. Biol. Plant. 54, 47–53. https://doi.org/10.1007/s10535-010-0007-1 (2010).

    Google Scholar 

  53. Gong, D. et al. Functional characterization of a Farnesyl diphosphate synthase from Dendrobium nobile Lindl. AMB Expr. 12, 129. https://doi.org/10.1186/s13568-022-01470-2 (2022).

    Google Scholar 

  54. Pu, G. B. et al. Salicylic acid activates Artemisinin biosynthesis in Artemisia annua L. Plant. Cell. Rep. 28, 1127–1135. https://doi.org/10.1007/s00299-009-0713-3 (2009).

    Google Scholar 

  55. Darbahani, M., Rahaie, M., Ebrahimi, A. & Khosrowshahli, M. The effects of several abiotic elicitors on the expression of genes of key enzymes involved in the parthenolide biosynthetic pathway and its content in feverfew plant (Tanacetum parthenium L). Nat. Prod. Res. 36, 6132–6136. https://doi.org/10.1080/14786419.2022.2055555 (2022).

    Google Scholar 

  56. Mandujano-Chávez, A., Schoenbeck, M. A., Ralston, L. F., Lozoya-Gloria, E. & Chappell, J. Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by Methyl jasmonate and fungal elicitor. Arch. Biochem. Biophys. 381 (2), 285–294. https://doi.org/10.1006/abbi.2000.1961 (2000).

    Google Scholar 

  57. Benevenuto, R. F. et al. Transcriptional profiling of Methyl jasmonate-induced defense responses in Bilberry (Vaccinium myrtillus L). BMC Plant Biol. 19, 70. https://doi.org/10.1186/s12870-019-1650-0 (2019).

    Google Scholar 

  58. Rajkumari, S. & Devi, H. S. Effect of elicitation on terpinen-4-ol production and differential expression analysis of terpenes biosynthesis genes in Zingiber Montanum. Sci. Hort. 342, 113849. https://doi.org/10.1016/j.scienta.2024.113849 (2025).

    Google Scholar 

  59. De Bruyn, C. et al. Identification and characterization of CYP71 subclade cytochrome P450 enzymes involved in the biosynthesis of bitterness compounds in Cichorium intybus. Front. Plant. Sci. 14, 1200253. https://doi.org/10.3389/fpls.2023.1200253 (2023).

    Google Scholar 

  60. Spitaler, R. et al. Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica Montana Cv. ARBO Phytochemistry. 67, 409–417. https://doi.org/10.1016/j.phytochem.2005.11.018 (2006).

    Google Scholar 

  61. Douglas, J. A. et al. Sesquiterpene lactones in Arnica montana: a rapid analytical method and the effects of flower maturity and simulated mechanical harvesting on quality and yield. Planta Med. 70, 166–170. https://doi.org/10.1055/s-2004-815495 (2004).

    Google Scholar 

  62. Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20 (4), 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).

    Google Scholar 

  63. Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134. https://doi.org/10.1186/1471-2105-13-134 (2012).

    Google Scholar 

Download references