References
-
Wang, F. et al. Transcription in fungal conidia before dormancy produces phenotypically variable conidia that maximize survival in different environments. Nat. Microbiol. 6, 1066–1081 (2021).
-
Rani, L. et al. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 283, 124657 (2021).
-
Baldi, I. et al. Neurodegenerative diseases and exposure to pesticides in the elderly. Am. J. Epidemiol. 157, 409–414 (2003).
-
Li, Y. et al. Neurological effects of pesticide use among farmers in China. Int. J. Environ. Res. Public. Health. 4, 3995–4006 (2014).
-
Fournier, B. et al. Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Sci. Total Environ. 738, 139635 (2020).
-
Hasanuzzaman, M. et al. Agrochemicals detection, Treatment and Remediation Ch. 3 (Butterworth-Heinemann, 2020).
-
Lindsey, A. P. J. et al. Microbial disease management in agriculture: current status and future prospects. Biocatal. Agric. Biotechnol. 23, 101468 (2020).
-
Pereira, D. et al. Natural selection drives population divergence for local adaptation in a wheat pathogen. Fungal Genet. Biol. 141, 103398 (2020).
-
Savary, S., Mcroberts, N., Esker, P. D., Willocquet, L. & Teng, P. S. Production situations as drivers of crop health: evidence and implications. Plant. Pathol. 66, 867–876 (2017).
-
Yadav, I. C. et al. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci. Total Environ. 511, 150 (2015).
-
Berman, J. & Krysan, D. J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 18, 319–331 (2020).
-
Bellah, H. et al. A highly multiplexed assay to monitor pathogenicity, fungicide resistance and gene flow in the fungal wheat pathogen Zymoseptoria tritici. PLoS One. 18, 0281181 (2023).
-
Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).
-
Kim, J. S. et al. Crossing the Kingdom border: human diseases caused by plant pathogens. Environ. Microbiol. 22, 2485–2495 (2020).
-
Fisher, M. C. et al. Threats posed by the fungal Kingdom to humans, wildlife, and agriculture. mBio 11, 10–1128 (2020).
-
Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, 428–438 (2024).
-
Brown, G. D. et al. The pathobiology of human fungal infections. Nat. Rev. Microbiol. 22, 687–704 (2024).
-
Oro, D. et al. Antifungal activity of natural compounds against Candida species isolated from HIV-positive patients. Asian Pac. J. Trop. Biomed. 5, 781–784 (2015).
-
Sarangi, P. K. et al. Production of bioactive phenolic compounds from agricultural by-products towards bioeconomic perspectives. J. Clean. Prod. 414, 137460 (2023).
-
Tomar, R. et al. A comprehensive study of waste coconut shell aggregate as Raw material in concrete. Mater. Today: Proc. 44, 437–443 (2021).
-
Vieira, F. et al. Coconut waste: discovering sustainable approaches to advance a circular economy. Sustainability 16, 3066 (2024).
-
Shiny, K. S., Remadevi, O. K., Nagaveni, H. C. & Vijayalakshmi, G. Preliminary study on antifungal effect of coconut shell pyrolytic oil against wood decay fungi. Int. Wood Prod. J. 5, 124–126 (2014).
-
Khalid Thebo, N. et al. Antifungal potential and antioxidant efficacy in the shell extract of Cocos nucifera (L.) (Arecaceae) against pathogenic dermal mycosis. Medicines 3, 12 (2016).
-
Pinheiro Pires, A. P. et al. Challenges and opportunities for bio-oil refining: A review. Energy Fuels. 33, 4683–4720 (2019).
-
Greco, G., Di Stasi, C., Rego, F., González, B. & Manyà, J. J. Effects of slow-pyrolysis conditions on the products yields and properties and on exergy efficiency: A comprehensive assessment for wheat straw. Appl. Energy. 279, 115842 (2020).
-
Zhao, Y. et al. Characterization of the key aroma compounds in a novel Qingke Baijiu of Tibet by GC-MS, GC× GC-MS and GC-O-MS. Food Chem. Adv. 4, 100589 (2024).
-
Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food. 2, 683–691 (2021).
-
Kristanc, L. et al. The pore-forming action of polyenes: from model membranes to living organisms. BBA-Biomembr 1861, 418–430 (2019).
-
Efimova, S. S., Malykhina, A. I. & Ostroumova, O. S. Triggering the amphotericin B Pore-Forming activity by phytochemicals. Membranes 13, 670 (2023).
-
Zarn, J. A. et al. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ. Health Perspect. 111, 255–261 (2003).
-
Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).
-
Heard, S. C., Wu, G. & Winter, J. M. Antifungal natural products. Curr. Opin. Biotechnol. 69, 232–241 (2021).
-
Zhou, M. et al. A dual-targeting antifungal is effective against multidrug-resistant human fungal pathogens. Nat. Microbiol. 9, 1325–1339 (2024).
-
Tleuova, A. B. et al. Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. J. Control Release. 326, 468–481 (2020).
-
Burtscher-Schaden, H., Durstberger, T. & Zaller, J. G. Toxicological comparison of pesticide active substances approved for conventional vs. organic agriculture in Europe. Toxics 10, 753 (2022).
-
Bandamaravuri, K. B. et al. Simultaneous detection of downy mildew and powdery mildew pathogens on Cucumis sativus and other cucurbits using duplex-qPCR and HRM analysis. AMB Expr. 10, 1–11 (2020).
-
Tebbets, B. et al. Identification and characterization of antifungal compounds using a Saccharomyces cerevisiae reporter bioassay. PLoS One. 7, 36021 (2012).
-
Mashuni, Y. N. et al. Analysis of liquid volatile matters from coconut shell pyrolysis by GC-MS and its potential as antifungal agent. Asian J. Chem. 32, 1728–1732 (2020).
-
Li, J. et al. Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activities from pickled radish. Food Chem. Toxicol. 136, 111050 (2020).
-
Wole-Osho, I. et al. An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids. Powder Technol. 363, 699–716 (2020).
-
Gao, S. et al. An environmentally safe formulation with enhanced solubility and fungicidal activity: Self-assembly and characterization of Difenoconazole-β-CD inclusion complex. J. Mol. Liq. 327, 114874 (2021).
-
Shchukin, V. M. et al. Validation of an ICP-MS method for the determination of mercury, lead, cadmium, and arsenic in medicinal plants and related drug preparations. Pharm. Chem. J. 54, 968–976 (2020).
-
Usman, H. M. et al. Sensitivity of Colletotrichum nymphaeae to six fungicides and characterization of fludioxonil-resistant isolates in China. Plant. Dis. 106, 165–173 (2022).
-
Wayne, P. A. Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline, 2nd ed. CLSI document M44-A2. Clinical and Laboratory Standards Institute (2009).
-
Wayne, P. A. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 2nd ed. CLSI document M38-A2. Clinical and Laboratory Standards Institute (2008).
-
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs for antifungal agents, version 11.0 (2024). http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/
-
Goughenour, K. D., Balada-Llasat, J. M. & Rappleye, C. A. Quantitative Microplate-Based growth assay for determination of antifungal susceptibility of Histoplasma capsulatum yeasts. J. Clin. Microbiol. 53, 3286–3295 (2015).
-
Arendrup, M. C. et al. How to: perform antifungal susceptibility testing of microconidia-forming dermatophytes following the new reference EUCAST method E. Def 11.0, exemplified by Trichophyton. Clin. Microbiol. Infect. 27, 55–60 (2021).
-
Kalhoro, M. T. et al. Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae. Sci. Rep. 12, 2191 (2022).
-
Dooley, H. et al. Effect of Azole fungicide mixtures, alternations and dose on Azole sensitivity in the wheat pathogen Zymoseptoria tritici. Plant. Pathol. 65, 124–136 (2016).
-
Ganapathy, D., Siddiqui, Y., Ahmad, K., Adzmi, F. & Ling, K. L. Alterations in mycelial morphology and flow cytometry assessment of membrane integrity of Ganoderma boninense stressed by phenolic compounds. Biology 10, 930 (2021).
-
Ji, J. Y. et al. Sodium pheophorbide a controls Cherry tomato Gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit. Pestic Biochem. Physiol. 166, 104581 (2020).
-
Wei, J. et al. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves Inhibition of ergosterol biosynthesis. J. Appl. Microbiol. 129, 256–265 (2020).
-
Calmes, B. et al. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Front. Plant. Sci. 6, 414 (2015).
-
Huang, X. et al. Antifungal activity of essential oils from three Artemisia species against Colletotrichum gloeosporioides of Mango. Antibiotics 10, 1331 (2021).
-
Kwun, M. S. & Lee, D. G. Quercetin-induced yeast apoptosis through mitochondrial dysfunction under the accumulation of magnesium in Candida albicans. Fungal Biol. 124, 83–90 (2020).
-
Jian, W., He, D. & Song, S. Synthesis, biological evaluation and molecular modeling studies of new oxadiazole-stilbene hybrids against phytopathogenic fungi. Sci. Rep. 6, 31045 (2016).
-
Houshmand, F. & Houshmand, S. Potentially highly effective drugs for COVID-19: virtual screening and molecular Docking study through PyRx-Vina approach. Front Health Inform 12, 150 (2023).
-
Sharma, S., Sharma, A. & Gupta, U. Molecular Docking studies on the Anti-fungal activity of Allium sativum (Garlic) against mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1. 0.0. Ann. Antivir Antiretrovir. 5, 028–032 (2021).
-
Lasee, S. et al. Plant uptake of per-and polyfluoroalkyl acids under a maximum bioavailability scenario. Environ. Toxicol. Chem. 38, 2497–2502 (2019).
-
Li, X. et al. Phytotoxicity response of sugar beet (Beta vulgaris L.) seedlings to herbicide fomesafen in soil. Ecotoxicol. Environ. Saf. 239, 113628 (2022).
-
Yang, T., Zhao, B., Kinchla, A. J., Clark, J. M. & He, L. Investigation of pesticide penetration and persistence on harvested and live Basil leaves using surface-enhanced Raman scattering mapping. J. Agric. Food Chem. 65, 3541–3550 (2017).
-
OECD Test No. 207: Earthworm, Acute Toxicity Tests, OECD Guidelines for the Testing of Chemicals, Sect. 2 (OECD Publishing, 1984).
-
De Silva, P. M. C. S. & van Gestel, C. A. M. Development of an alternative artificial soil for earthworm toxicity testing in tropical countries. Appl. Soil. Ecol. 43, 170–174 (2009).
-
Bandeira, F. O. et al. Toxicity of Imidacloprid to the earthworm Eisenia Andrei and Collembolan Folsomia Candida in three contrasting tropical soils. J. Soils Sediments. 20, 1997–2007 (2020).
-
Yuan, Y. et al. Toxicological effects induced by two carbamates on earthworms (Eisenia fetida): acute toxicity, arrested regeneration and underlying mechanisms. Ecotoxicol. Environ. Saf. 269, 115824 (2024).
-
Farsani, A. T. et al. Ecotoxicity of Chlorpyrifos on earthworm Eisenia fetida (Savigny, 1826): modifications in oxidative biomarkers. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 249, 109145 (2021).
-
Martínez-Salgado, S. J. et al. Biological control of charcoal rot in peanut crop through strains of Trichoderma spp., in Puebla, Mexico. Plants. 10, 2630 (2021).
-
Zhu, M. et al. Podosphaera xanthii causing powdery mildew on Impatiens balsamina in China. Can. J. Plant. Pathol. 44, 354–360 (2022).
-
Mitani, S. et al. Control of cucumber downy mildew by Cyazofamid. J. Pesticide Sci. 28, 64–68 (2003).
-
Yu, X. et al. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit. Care. 24, 170 (2020).
-
Ginovyan, M. et al. Phytochemical screening and detection of antibacterial components from crude extracts of some Armenian herbs using TLC-bioautographic technique. Curr. Microbiol. 77 (7), 1223–1232 (2020).
-
Jin, Q. et al. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front. Genet. 14, 1009746 (2023).
-
Islam, Z. et al. Bacterial versus human thymidylate synthase: kinetics and functionality. PLoS One. 13, 0196506 (2018).
-
Yang, T. Real-time monitoring of pesticide translocation in tomato plants by surface-enhanced Raman spectroscopy. Anal. Chem. 91, 2093–2099 (2019).
-
Zhao, C. et al. Structure of a fungal 1, 3-β-glucan synthase. Sci. Adv. 37, 7820 (2023).
-
Tkachuk, N., Zelena, L., Novikov, Y. & Taranenko, V. Phytotoxicity of dimethyl sulfoxide in the growth test. Biota. Hum. Technol. 30 (3), 51–60 (2024).
