Shrimycocin-A, a next generation broad spectrum and systemic biofungicide from coconut shell agro waste for crop protection

shrimycocin-a,-a-next-generation-broad-spectrum-and-systemic-biofungicide-from-coconut-shell-agro-waste-for-crop-protection
Shrimycocin-A, a next generation broad spectrum and systemic biofungicide from coconut shell agro waste for crop protection

References

  1. Wang, F. et al. Transcription in fungal conidia before dormancy produces phenotypically variable conidia that maximize survival in different environments. Nat. Microbiol. 6, 1066–1081 (2021).

    Google Scholar 

  2. Rani, L. et al. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 283, 124657 (2021).

    Google Scholar 

  3. Baldi, I. et al. Neurodegenerative diseases and exposure to pesticides in the elderly. Am. J. Epidemiol. 157, 409–414 (2003).

    Google Scholar 

  4. Li, Y. et al. Neurological effects of pesticide use among farmers in China. Int. J. Environ. Res. Public. Health. 4, 3995–4006 (2014).

    Google Scholar 

  5. Fournier, B. et al. Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Sci. Total Environ. 738, 139635 (2020).

    Google Scholar 

  6. Hasanuzzaman, M. et al. Agrochemicals detection, Treatment and Remediation Ch. 3 (Butterworth-Heinemann, 2020).

  7. Lindsey, A. P. J. et al. Microbial disease management in agriculture: current status and future prospects. Biocatal. Agric. Biotechnol. 23, 101468 (2020).

    Google Scholar 

  8. Pereira, D. et al. Natural selection drives population divergence for local adaptation in a wheat pathogen. Fungal Genet. Biol. 141, 103398 (2020).

    Google Scholar 

  9. Savary, S., Mcroberts, N., Esker, P. D., Willocquet, L. & Teng, P. S. Production situations as drivers of crop health: evidence and implications. Plant. Pathol. 66, 867–876 (2017).

    Google Scholar 

  10. Yadav, I. C. et al. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci. Total Environ. 511, 150 (2015).

    Google Scholar 

  11. Berman, J. & Krysan, D. J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 18, 319–331 (2020).

    Google Scholar 

  12. Bellah, H. et al. A highly multiplexed assay to monitor pathogenicity, fungicide resistance and gene flow in the fungal wheat pathogen Zymoseptoria tritici. PLoS One. 18, 0281181 (2023).

    Google Scholar 

  13. Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    Google Scholar 

  14. Kim, J. S. et al. Crossing the Kingdom border: human diseases caused by plant pathogens. Environ. Microbiol. 22, 2485–2495 (2020).

    Google Scholar 

  15. Fisher, M. C. et al. Threats posed by the fungal Kingdom to humans, wildlife, and agriculture. mBio 11, 10–1128 (2020).

    Google Scholar 

  16. Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, 428–438 (2024).

    Google Scholar 

  17. Brown, G. D. et al. The pathobiology of human fungal infections. Nat. Rev. Microbiol. 22, 687–704 (2024).

    Google Scholar 

  18. Oro, D. et al. Antifungal activity of natural compounds against Candida species isolated from HIV-positive patients. Asian Pac. J. Trop. Biomed. 5, 781–784 (2015).

    Google Scholar 

  19. Sarangi, P. K. et al. Production of bioactive phenolic compounds from agricultural by-products towards bioeconomic perspectives. J. Clean. Prod. 414, 137460 (2023).

    Google Scholar 

  20. Tomar, R. et al. A comprehensive study of waste coconut shell aggregate as Raw material in concrete. Mater. Today: Proc. 44, 437–443 (2021).

    Google Scholar 

  21. Vieira, F. et al. Coconut waste: discovering sustainable approaches to advance a circular economy. Sustainability 16, 3066 (2024).

    Google Scholar 

  22. Shiny, K. S., Remadevi, O. K., Nagaveni, H. C. & Vijayalakshmi, G. Preliminary study on antifungal effect of coconut shell pyrolytic oil against wood decay fungi. Int. Wood Prod. J. 5, 124–126 (2014).

    Google Scholar 

  23. Khalid Thebo, N. et al. Antifungal potential and antioxidant efficacy in the shell extract of Cocos nucifera (L.) (Arecaceae) against pathogenic dermal mycosis. Medicines 3, 12 (2016).

    Google Scholar 

  24. Pinheiro Pires, A. P. et al. Challenges and opportunities for bio-oil refining: A review. Energy Fuels. 33, 4683–4720 (2019).

    Google Scholar 

  25. Greco, G., Di Stasi, C., Rego, F., González, B. & Manyà, J. J. Effects of slow-pyrolysis conditions on the products yields and properties and on exergy efficiency: A comprehensive assessment for wheat straw. Appl. Energy. 279, 115842 (2020).

    Google Scholar 

  26. Zhao, Y. et al. Characterization of the key aroma compounds in a novel Qingke Baijiu of Tibet by GC-MS, GC× GC-MS and GC-O-MS. Food Chem. Adv. 4, 100589 (2024).

    Google Scholar 

  27. Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food. 2, 683–691 (2021).

    Google Scholar 

  28. Kristanc, L. et al. The pore-forming action of polyenes: from model membranes to living organisms. BBA-Biomembr 1861, 418–430 (2019).

    Google Scholar 

  29. Efimova, S. S., Malykhina, A. I. & Ostroumova, O. S. Triggering the amphotericin B Pore-Forming activity by phytochemicals. Membranes 13, 670 (2023).

    Google Scholar 

  30. Zarn, J. A. et al. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ. Health Perspect. 111, 255–261 (2003).

    Google Scholar 

  31. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Google Scholar 

  32. Heard, S. C., Wu, G. & Winter, J. M. Antifungal natural products. Curr. Opin. Biotechnol. 69, 232–241 (2021).

    Google Scholar 

  33. Zhou, M. et al. A dual-targeting antifungal is effective against multidrug-resistant human fungal pathogens. Nat. Microbiol. 9, 1325–1339 (2024).

    Google Scholar 

  34. Tleuova, A. B. et al. Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. J. Control Release. 326, 468–481 (2020).

    Google Scholar 

  35. Burtscher-Schaden, H., Durstberger, T. & Zaller, J. G. Toxicological comparison of pesticide active substances approved for conventional vs. organic agriculture in Europe. Toxics 10, 753 (2022).

    Google Scholar 

  36. Bandamaravuri, K. B. et al. Simultaneous detection of downy mildew and powdery mildew pathogens on Cucumis sativus and other cucurbits using duplex-qPCR and HRM analysis. AMB Expr. 10, 1–11 (2020).

    Google Scholar 

  37. Tebbets, B. et al. Identification and characterization of antifungal compounds using a Saccharomyces cerevisiae reporter bioassay. PLoS One. 7, 36021 (2012).

    Google Scholar 

  38. Mashuni, Y. N. et al. Analysis of liquid volatile matters from coconut shell pyrolysis by GC-MS and its potential as antifungal agent. Asian J. Chem. 32, 1728–1732 (2020).

    Google Scholar 

  39. Li, J. et al. Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activities from pickled radish. Food Chem. Toxicol. 136, 111050 (2020).

    Google Scholar 

  40. Wole-Osho, I. et al. An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids. Powder Technol. 363, 699–716 (2020).

    Google Scholar 

  41. Gao, S. et al. An environmentally safe formulation with enhanced solubility and fungicidal activity: Self-assembly and characterization of Difenoconazole-β-CD inclusion complex. J. Mol. Liq. 327, 114874 (2021).

    Google Scholar 

  42. Shchukin, V. M. et al. Validation of an ICP-MS method for the determination of mercury, lead, cadmium, and arsenic in medicinal plants and related drug preparations. Pharm. Chem. J. 54, 968–976 (2020).

    Google Scholar 

  43. Usman, H. M. et al. Sensitivity of Colletotrichum nymphaeae to six fungicides and characterization of fludioxonil-resistant isolates in China. Plant. Dis. 106, 165–173 (2022).

    Google Scholar 

  44. Wayne, P. A. Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline, 2nd ed. CLSI document M44-A2. Clinical and Laboratory Standards Institute (2009).

  45. Wayne, P. A. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 2nd ed. CLSI document M38-A2. Clinical and Laboratory Standards Institute (2008).

  46. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs for antifungal agents, version 11.0 (2024). http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/

  47. Goughenour, K. D., Balada-Llasat, J. M. & Rappleye, C. A. Quantitative Microplate-Based growth assay for determination of antifungal susceptibility of Histoplasma capsulatum yeasts. J. Clin. Microbiol. 53, 3286–3295 (2015).

    Google Scholar 

  48. Arendrup, M. C. et al. How to: perform antifungal susceptibility testing of microconidia-forming dermatophytes following the new reference EUCAST method E. Def 11.0, exemplified by Trichophyton. Clin. Microbiol. Infect. 27, 55–60 (2021).

    Google Scholar 

  49. Kalhoro, M. T. et al. Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae. Sci. Rep. 12, 2191 (2022).

    Google Scholar 

  50. Dooley, H. et al. Effect of Azole fungicide mixtures, alternations and dose on Azole sensitivity in the wheat pathogen Zymoseptoria tritici. Plant. Pathol. 65, 124–136 (2016).

    Google Scholar 

  51. Ganapathy, D., Siddiqui, Y., Ahmad, K., Adzmi, F. & Ling, K. L. Alterations in mycelial morphology and flow cytometry assessment of membrane integrity of Ganoderma boninense stressed by phenolic compounds. Biology 10, 930 (2021).

    Google Scholar 

  52. Ji, J. Y. et al. Sodium pheophorbide a controls Cherry tomato Gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit. Pestic Biochem. Physiol. 166, 104581 (2020).

    Google Scholar 

  53. Wei, J. et al. Antifungal activity of cinnamaldehyde against Fusarium sambucinum involves Inhibition of ergosterol biosynthesis. J. Appl. Microbiol. 129, 256–265 (2020).

    Google Scholar 

  54. Calmes, B. et al. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Front. Plant. Sci. 6, 414 (2015).

    Google Scholar 

  55. Huang, X. et al. Antifungal activity of essential oils from three Artemisia species against Colletotrichum gloeosporioides of Mango. Antibiotics 10, 1331 (2021).

    Google Scholar 

  56. Kwun, M. S. & Lee, D. G. Quercetin-induced yeast apoptosis through mitochondrial dysfunction under the accumulation of magnesium in Candida albicans. Fungal Biol. 124, 83–90 (2020).

    Google Scholar 

  57. Jian, W., He, D. & Song, S. Synthesis, biological evaluation and molecular modeling studies of new oxadiazole-stilbene hybrids against phytopathogenic fungi. Sci. Rep. 6, 31045 (2016).

    Google Scholar 

  58. Houshmand, F. & Houshmand, S. Potentially highly effective drugs for COVID-19: virtual screening and molecular Docking study through PyRx-Vina approach. Front Health Inform 12, 150 (2023).

  59. Sharma, S., Sharma, A. & Gupta, U. Molecular Docking studies on the Anti-fungal activity of Allium sativum (Garlic) against mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1. 0.0. Ann. Antivir Antiretrovir. 5, 028–032 (2021).

    Google Scholar 

  60. Lasee, S. et al. Plant uptake of per-and polyfluoroalkyl acids under a maximum bioavailability scenario. Environ. Toxicol. Chem. 38, 2497–2502 (2019).

    Google Scholar 

  61. Li, X. et al. Phytotoxicity response of sugar beet (Beta vulgaris L.) seedlings to herbicide fomesafen in soil. Ecotoxicol. Environ. Saf. 239, 113628 (2022).

    Google Scholar 

  62. Yang, T., Zhao, B., Kinchla, A. J., Clark, J. M. & He, L. Investigation of pesticide penetration and persistence on harvested and live Basil leaves using surface-enhanced Raman scattering mapping. J. Agric. Food Chem. 65, 3541–3550 (2017).

    Google Scholar 

  63. OECD Test No. 207: Earthworm, Acute Toxicity Tests, OECD Guidelines for the Testing of Chemicals, Sect. 2 (OECD Publishing, 1984).

  64. De Silva, P. M. C. S. & van Gestel, C. A. M. Development of an alternative artificial soil for earthworm toxicity testing in tropical countries. Appl. Soil. Ecol. 43, 170–174 (2009).

    Google Scholar 

  65. Bandeira, F. O. et al. Toxicity of Imidacloprid to the earthworm Eisenia Andrei and Collembolan Folsomia Candida in three contrasting tropical soils. J. Soils Sediments. 20, 1997–2007 (2020).

    Google Scholar 

  66. Yuan, Y. et al. Toxicological effects induced by two carbamates on earthworms (Eisenia fetida): acute toxicity, arrested regeneration and underlying mechanisms. Ecotoxicol. Environ. Saf. 269, 115824 (2024).

    Google Scholar 

  67. Farsani, A. T. et al. Ecotoxicity of Chlorpyrifos on earthworm Eisenia fetida (Savigny, 1826): modifications in oxidative biomarkers. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 249, 109145 (2021).

    Google Scholar 

  68. Martínez-Salgado, S. J. et al. Biological control of charcoal rot in peanut crop through strains of Trichoderma spp., in Puebla, Mexico. Plants. 10, 2630 (2021).

  69. Zhu, M. et al. Podosphaera xanthii causing powdery mildew on Impatiens balsamina in China. Can. J. Plant. Pathol. 44, 354–360 (2022).

    Google Scholar 

  70. Mitani, S. et al. Control of cucumber downy mildew by Cyazofamid. J. Pesticide Sci. 28, 64–68 (2003).

    Google Scholar 

  71. Yu, X. et al. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit. Care. 24, 170 (2020).

    Google Scholar 

  72. Ginovyan, M. et al. Phytochemical screening and detection of antibacterial components from crude extracts of some Armenian herbs using TLC-bioautographic technique. Curr. Microbiol. 77 (7), 1223–1232 (2020).

    Google Scholar 

  73. Jin, Q. et al. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front. Genet. 14, 1009746 (2023).

    Google Scholar 

  74. Islam, Z. et al. Bacterial versus human thymidylate synthase: kinetics and functionality. PLoS One. 13, 0196506 (2018).

    Google Scholar 

  75. Yang, T. Real-time monitoring of pesticide translocation in tomato plants by surface-enhanced Raman spectroscopy. Anal. Chem. 91, 2093–2099 (2019).

    Google Scholar 

  76. Zhao, C. et al. Structure of a fungal 1, 3-β-glucan synthase. Sci. Adv. 37, 7820 (2023).

    Google Scholar 

  77. Tkachuk, N., Zelena, L., Novikov, Y. & Taranenko, V. Phytotoxicity of dimethyl sulfoxide in the growth test. Biota. Hum. Technol. 30 (3), 51–60 (2024).

    Google Scholar 

Download references