References
-
Warghane, A. et al. Application of nanoparticles for management of plant viral pathogen: current status and future prospects. Virology 592, 109998. https://doi.org/10.1016/j.virol.2024.109998 (2024).
-
Varma, S. et al. Nanophytovirology approach to combat plant virus diseases in Nanotechnology in Agriculture and Environmental Science (eds Deshmukh, S. K., Kochar, M., Kaur, P. & Singh, P. P.) 127–154 (Taylor & Francis, (2023).
-
Rajwade, J. M., Chikte, R. & Paknikar, K. Nanomaterials: new weapons in a crusade against phytopathogens. Appl. Microbiol. Biotechnol. 104, 1437–1461. https://doi.org/10.1007/s00253-019-10334-y (2020).
-
Tortella, G. R. et al. Synthesis of silver nanoparticles using extract of weeds and optimized by response surface methodology to the control of soil pathogenic bacteria ralstonia solanacearum. J. Soil. Sci. Plant. Nutr. 19 (1), 148–115. https://doi.org/10.1007/s42729-019-00021-2 (2019).
-
Tortella, G. R. et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 390, 121974. https://doi.org/10.1016/j.jhazmat.2019.121974 (2020).
-
Tortella, G. R. et al. Advanced material against human (including Covid-19) and plant viruses: nanoparticles as a feasible strategy. Glob Chall. 5 (3), 1–13. 10.1002/ gch2.202000049 (2021).
-
Ma, G., Chen, P., Buss, G. R. & Tolin, S. A. Genetics of resistance to two strains of soybean mosaic virus in differential soybean genotypes. J. Hered. 95, 322–326. https://doi.org/10.1093/jhered/esh059 (2004).
-
Kang, B. C., Yeam, I. & Jahn, M. M. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43, 581–621. https://doi.org/10.1146/annurev.phyto.43.011205.141140 (2005).
-
Lv, W. et al. The behavior, transport, and positive regulation mechanism of ZnO nanoparticles in a plant-soil-microbe environment. Environ. Pollut. 315, 120368. https://doi.org/10.1016/j.envpol.2022.120368 (2022).
-
Farooq, T. et al. Nanotechnology and plant viruses: an emerging disease management approach for resistant pathogens. ACS Nano. 15 (4), 6030–6037. https://doi.org/10.1021/acsnano.0c10910 (2021).
-
Yiblet, Y. & Sisay, M. Metal oxide nanoparticles as a promising method to reduce biotic stress in plant cell wall: A review. Heliyon 10 (19), e37939. https://doi.org/10.1016/j.heliyon.2024.e37939 (2024).
-
Alhebsi, B. M. S., Francis, D. V. & Ahmed, Z. F. R. Nuti-priming for enhancing seed germination of Prosopis cineraria for afforestation of deserts. Acta Hortic. 1404, 499‐504 https://doi.org/10.17660/ActaHortic.2024.1404.67
-
Cai, L., Liu, C., Fan, G., Liu, C. & Sun, S. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ. Sci. : Nano. 6 (12), 3653–3669. https://doi.org/10.1039/C9EN00850K (2019).
-
Hao, Y. et al. Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environ. Sci. : Nano. 5 (7), 1685–1693 (2018). 10.1039/ C8EN00014J.
-
Wang, Y. et al. Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism. Tob. Sci. Technol. 49, 22–30. https://doi.org/10.16135/j.issn1002-0861.20160104 (2016).
-
Vankova, R. et al. ZnO nanoparticle effects on hormonal pools in Arabidopsis Thaliana. Sci. Total Environ. 593-594, 535–542. https://doi.org/10.1016/j.scitotenv.2017.03.160 (2017).
-
Fujikawa, I. et al. Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. J. Biotechnol. 325, 100–108. https://doi.org/10.1016/j.jbiotec.2020.11.012 (2021).
-
Elsharkawy, M. M. & Derbalah, A. Antiviral activity of titanium dioxide nanostructures as a control strategy for broad bean strain virus in Faba bean. Pest Manage. Sci. 75 (3), 828–834. https://doi.org/10.1002/ps.5185 (2019).
-
Dan-Hardi, M. et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857–10859. https://doi.org/10.1021/ja903726m (2009).
-
Li, W. Q. et al. Integration of subcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (Lactuca sativa L.) under different exposure pathways. Chemosphere 258, 127349. https://doi.org/10.1016/j.chemosphere.2020.127349 (2020).
-
Tan, B. L., Norhaizan, M. E., Liew, W. P. P. & Rahman, S. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front. Pharmacol. 9, 1162. https://doi.org/10.3389/fphar.2018.01162 (2018).
-
Siddiqi, K. & Husen, A. Plant response to engineered metal oxide nanoparticles. Nanoscale Res. Lett. 12 https://doi.org/10.1186/s11671-017-1861-y (2017).
-
Vargas-Hernandez, M. et al. Nanoparticles as potential antivirals in agriculture. Agriculture 10 (10), 444. https://doi.org/10.3390/agriculture10100444 (2020).
-
Xiao, J. D. & Jiang, H. L. Metal–Organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 56, 356. https://doi.org/10.1021/acs.accounts.8b00521 (2019).
-
Masood, H. A. et al. Metal–organic frameworks as versatile platforms for sustainable crop disease management: a comprehensive review of mechanisms and applications. Environ. Sci. Nano. 12 (7), 3425–3441. https://doi.org/10.1039/D5EN00042D (2025).
-
Shahzadi, S., Akhtar, M., Arshad, M., Ijaz, M. H. & Janjua, M. R. S.A. A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv. 14 (38), 27575–27607. https://doi.org/10.1039/d4ra05183a (2024).
-
Chauhan, D., Omar, R. A., Mangalaraja, R. V., Ashfaq, M. & Talreja, N. Metal-organic framework as an emerging material: a novel plant growth stimulant in Nanotechnology-based sustainable alternatives for the management of plant diseases (ed. Balestra, G., Fortunati, E.) 323–339 (Elsevier, 2022).
-
Basak, S. et al. Metal-organic framework as nanocarriers for agricultural applications: a review. Front. Nanotechnol. 6, 1385981. https://doi.org/10.3389/fnano.2024.1385981 (2024).
-
Abánades, L. et al. Metal–organic frameworks for biological applications. Nat. Rev. Methods Primers. 4 https://doi.org/10.1038/s43586-024-00320-8 (2024).
-
Elmer, W. & White, J. C. The future of nanotechnology in plant pathology. Annu. Rev. Phytopathol. 56, 111–133. https://doi.org/10.1146/annurev-phyto-080417-050108 (2018).
-
Banerjee, S., Bose, S., Shukla, A. C. & Baig, M. R. Biotechnological approaches in infectious diseases in Concepts in pharmaceutical biotechnology and drug development (ed. Bose, S., Shukla, A.C., Baig, M.R., Banerjee, S.), 397 – 317 (Springer, 2024).
-
Ramezani, M., Ramezani, F. & Gerami, M. Nanoparticles in pest incidences and plant disease control in Nanotechnology for agriculture: crop production & protection (ed. Panpatte, D.G., Jhala, Y.K.) 233–272. (Springer, 2019).
-
Jain, D. & Kothari, S. L. Green synthesis of silver nanoparticles and their application in plant virus Inhibition. J. Mycol. Plant. Pathol. 44 (1), 1–4 (2014).
-
Abdelkhalek, A. et al. Ocimum basilicum-mediated synthesis of silver nanoparticles induces innate immune responses against Cucumber mosaic virus in squash. Plants 11, 2707. https://doi.org/10.3390/plants11202707 (2022).
-
El-Dougdoug, N. K., Bondok, A. & El-Dougdoug, K. A. Evaluation of silver nanoparticles as antiviral agent against ToMV and PVY in tomato plants. Middle East J. Appl. Sci. 8 (1), 100–111 (2018).
-
Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. https://doi.org/10.1007/s004250050524 (1999).
-
Otulak-Kozieł, K., Kozieł, E., Treder, K. & Király, L. Glutathione contribution in interactions between turnip mosaic virus and Arabidopsis Thaliana mutants lacking respiratory burst oxidase homologs D and F. Int. J. Mol. Sci. 24 (8), 7128. https://doi.org/10.3390/ijms24087128 (2023).
-
Thayer, S. S. & Björkman, O. Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res. 23, 331–343. https://doi.org/10.1007/BF00034864 (1990).
-
Štefanić, P. P. et al. Phytotoxicity of silver nanoparticles on tobacco plants: evaluation of coating effects on photosynthetic performance and Chloroplast ultrastructure. Nanomaterials 11 (74). https://doi.org/10.3390/nano11030744 (2021).
-
Lam, V. P., Loi, D. N., Shin, J., Mi, L. K. & Park, J. Optimization of Salicylic acid concentrations for increasing antioxidant enzymes and bioactive compounds of Agastache rugosa in a plant factory. PLoS ONE. 19 (7), e0306340. https://doi.org/10.1371/journal.pone.0306340 (2024).
-
Otulak, K., Garbaczewska, G. & Cytopathological Potato virus Y structures during Solanaceous plants infection. Micron 43(7), 839–850. https://doi.org/10.1016/j.micron.2012.02.015 (2012).
-
Nasiłowska, B., Skrzeczanowski, W., Bombalska, A. & Bogdanowicz, Z. Laser emission spectroscopy of graphene oxide deposited on 316 steel and Ti6Al4V titanium alloy suitable for orthopedics. Materials 16, 2574. https://doi.org/10.3390/ma16072574 (2023).
-
Treder, K., Zacharzewska, B., Przewodowska, A., Przewodowski, W. & Otulak, K. Ion-exchange membrane chromatography as an alternative method of separation of potato Y virus. Plant. Breed. Seed Sci. 72, 55–67. https://doi.org/10.1515/plass-2015-0031 (2015).
-
Ali, S. et al. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 212–213, 29–37. https://doi.org/10.1016/j.micres.2018.04.008 (2018).
-
Baebler, Š., Coll, A. & Grunden, K. Plant molecular responses to Potato virus Y: a continuum of outcomes from sensitivity and tolerance to resistance. Viruses 12, 217. https://doi.org/10.3390/v12020217 (2020).
-
Otulak-Kozieł, K., Kozieł, E., Lockhart, B. E. L. & Bujarski, J. J. The expression of potato expansin A3 (StEXPA3) and extension 4 (StEXT4) genes with distribution of StEXPAs and HRGPs-extensin changes as an effect of cell wall rebuilding in two types of PVYNTN–Solanum tuberosum interactions. Viruses 12, 66. https://doi.org/10.3390/v12010066 (2020).
-
Kozieł, E., Surowiecki, P., Przewodowska, A., Bujarski, J. J. & Otulak-Kozieł, K. Modulation of expression of PVYNTN RNA-dependent RNA polymerase (NIb) and heat shock cognate host protein HSC70 in susceptible and hypersensitive potato cultivars. Vaccines 9 (11), 1254. https://doi.org/10.3390/vaccines9111254 (2021).
-
Otulak-Kozieł, K., Kozieł, E., Horváth, E. & Csiszár, J. AtGSTU19 and AtGSTU24 as moderators of the response of Arabidopsis thaliana to Turnip mosaic virus. Int. J. Mol. Sci. 23, 11531. https://doi.org/10.3390/ijms231911531 (2022).
-
Baek, E., Yoon, J. Y. & Palukaitis, P. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco. Virology 510, 29–39. https://doi.org/10.1016/j.virol.2017.06.029 (2017).
-
Otulak, K. & Garbaczewska, G. Ultrastructural events during hypersensitive response of potato cv. Rywal infected with necrotic strains of potato virus Y. Acta Physiol. Plant. 32, 635–644. https://doi.org/10.1007/s11738-009-0440-y (2010).
-
Otulak, K. & Garbaczewska, G. The participation of plant cell organelles in compatible and incompatible potato virus Y-tobacco and -potato plant interaction. Acta Physiol. Plant. 36, 85–99. https://doi.org/10.1007/s11738-013-1389-4 (2014).
-
Raskin, I., Turner, I. M. & Melander, W. R. Regulation of heat production in the inflorescences of arum Lily by endogenous Salicylic acid. Proc. Natl. Acad. Sci. USA. 86, 2214–2218 (1989).
-
Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A. & Raskin, I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant. Cell. 3 (8), 809–818. https://doi.org/10.1105/tpc.3.8.809 (1991).
-
Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207; 10.1007/ Bf00018060 (1973). (1973).
-
Marín, J. A., Carrasco, A. A. & Arbeloa, A. Proline content in root tissues and root exudates as a response to salt stress of excised root cultures of Prunus fruit tree rootstocks. ITEA 105, 282–290 (2009).
-
Avni, A. et al. From survival to productivity mode: cytokinins allow avoiding the avoidance strategy under stress conditions. Front. Plant. Sci. 11, 879. https://doi.org/10.3389/fpls.2020.00879 (2020).
-
Poborilova, Z., Opatrilova, R. & Babula, P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot. 91, 1–11 (2013).
-
Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16 (3), 144–158 (1965).
-
Sandhu, D., Cornacchione, M. V., Ferreira, J. F. S. & Suarez, D. L. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci. Rep. 7, 42958. https://doi.org/10.1038/srep42958 (2017).
-
Cvjetko, P. et al. Phytotoxic effects of silver nanoparticles in tobacco plants. Environ. Sci. Pollut Res. 25, 5590–5602. https://doi.org/10.1007/s11356-017-0928-8 (2018).
-
Peltonen, S. & Karjalainen, R. Phenylalanine ammonia-lyase activity in barley after infection with Bipolaris Sorokiniana or treatment with its purified Xylanase. J. Phytopathol. 143 (4), 239–245. https://doi.org/10.1111/j.1439-0434.1995.tb00606.x (1995).
-
Li, L. & Steffens, J. C. Overexpression of polyphenol oxidase in Transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239–247. https://doi.org/10.1007/s00425-002-0750-4 (2002).
-
Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assay and an assay applicable to PAGE. Anal. Biochem. 44 (1), 276–287. https://doi.org/10.1016/0003-2697(71)90370-8 (1971).
-
Bradford, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).
-
Esterbauer, H., Schwarzl, E. & Hayn, M. A rapid assay for catechol oxidase and laccase using 2-nitro-5-thiobenzoic acid. Anal. Biochem. 77, 486–494. https://doi.org/10.1016/0003-2697(77)90262-7 (1977).
-
Thipyapong, P., Hunt, M. D. & Steffens, J. C. Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry 40, 673–676. https://doi.org/10.1016/0031-9422(95)00359-F (1995).
-
Chang, J. et al. A thaumatin-like effector protein suppresses the rust resistance of wheat and promotes the pathogenicity of Puccinia triticina by targeting TaRCA. New. Phytol. 244 (5), 1947–1960. https://doi.org/10.1111/nph.20142 (2024).
-
He, R., Li, Y., Bernards, M. A. & Wang, A. Turnip mosaic virus selectively subverts a PR-5 thaumatin-like, plasmodesmal protein to promote viral infection. New. Phytol. 245 (1), 299–317. https://doi.org/10.1111/nph.20233 (2025).
-
Derbalah, A. S. H. & Elsharkawy, M. M. A new strategy to control Cucumber mosaic virus using fabricated NiO-nanostructures. J. Biotechnol. 306, 134–141. https://doi.org/10.1016/j.jbiotec.2019.10.003 (2019).
-
Eugene, K. & Zholobak, N. Antiviral activity of cerium dioxide nanoparticles on Tobacco mosaic virus model. Topical Issues new. Drugs Dev. 1, 355 (2016).
-
Elbeshehy, E. K. F., Elazzazy, A. M. & Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean yellow mosaic virus and human pathogens. Front. Microbiol. 6, 453. https://doi.org/10.3389/fmicb.2015.00453 (2015).
-
Acuña-Fuentes, N. L. et al. Antiviral activity of TiO2 NPs against Tobacco mosaic virus in chili pepper (Capsicum annuum L.). Agriculture 12, 2101. https://doi.org/10.3390/agriculture12122101 (2022).
-
Judy, J. D., Unrine, J. M., Rao, W., Wirick, S. & Bertsch, P. M. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ. Sci. Technol. 46, 8467–8474. https://doi.org/10.1021/es3019397 (2012).
-
Slomberg, D. L. & Schoenfisch, M. H. Silica nanoparticle phytotoxicity to Arabidopsis Thaliana. Environ. Sci. Technol. 46, 10247–10254. https://doi.org/10.1021/es300949f (2012).
-
Albersheim, B., Darvill, A., Roberts, K., Sederoff, R. & Staehelin, A. Cell Walls and Plant Anatomy in Plant cell walls (ed. Albersheim, B., Darvill, A., Roberts, K., Sederoff, R., Staehelin) 1–42. (Garland Science, 2010).
-
Wu, H. & Li, Z. Nano-enabled agriculture: how do nanoparticles cross barriers in plants? Plant. Commun. 3 (6), 100346. https://doi.org/10.1016/j.xplc.2022.100346 (2022).
-
Schwab, F. et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology 10, 257–278. https://doi.org/10.3109/17435390.2015.1048326 (2016).
-
Lv, Z. et al. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): accumulation, biotransformation and phytotoxicity. Sci. Total Environ. 796, 148927. https://doi.org/10.1016/j.scitotenv.2021.148927 (2021).
-
Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172. https://doi.org/10.1021/acs.nanolett.5b04467 (2016).
-
Mckenna, J. F. et al. The cell wall regulates dynamics and size of plasma- membrane nanodomains in Arabidopsis. Proc. Natl. Acad. Sci. USA. 116, 12857–12862. https://doi.org/10.1073/pnas.1819077116 (2019).
-
Alkubaisi, N. A. & Aref, N. M. Dispersed gold nanoparticles potentially ruin gold Barley yellow Dwarf virus and eliminate virus infectivity hazards. Appl. Nanosci. 7 (1–2), 31–40. https://doi.org/10.1080/13102818.2015.1008194 (2017).
-
El Gamal, A. Y. et al. Silver nanoparticles as a viricidal agent to inhibit plant-infecting viruses and disrupt their acquisition and transmission by their aphid vector. Arch. Virol. 167, 85–97. https://doi.org/10.1007/s00705-021-05280-y (2022).
-
Cai, L. et al. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J. Hazard. Mater. 393, 122415. https://doi.org/10.1016/j.jhazmat.2020.122415 (2020).
-
Goggin, F. L. & Fisher, H. D. Reactive oxygen species in plant interactions with aphids. Front. Plant. Sci. 12, 811105. https://doi.org/10.3389/fpls.2021.811105 (2022).
-
Parida, A. K., Das, A. B. & Mochanty, P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J. Plant. Physiol. 161 (5), 531–542. https://doi.org/10.1078/0176-1617-01084 (2004).
-
Madhusudhan, K. N., Srikanta, B. M., Shylaja, M. D., Prakash, H. S. & Shetty, H. S. Changes in antioxidant enzymes, hydrogen peroxide, Salicylic acid and oxidative stress in compatible and incompatible host-tobamovirus interaction. J. Plant. Interact. 4 (3), 157–166. https://doi.org/10.1080/17429140802419516 (2009).
-
Abdelkhalek, A., Al-Askar, A., Alsubaie, M. M. & Behiry, S. I. First report of protective activity of Paronychia Argentea extract against Tobacco mosaic virus infection. Plants 10 (11), 2435. https://doi.org/10.3390/plants10112435 (2021).
-
Aseel, D. G. et al. Foliar application of nanoclay promotes potato (Solanum tuberosum L.) growth and induces systemic resistance against Potato virus Y. Viruses 14 (10), 2151. https://doi.org/10.3390/v14102151 (2022).
-
Sofy, A. R. et al. Mitigating effects of Bean yellow mosaic virus infection in Faba bean using new carboxymethyl chitosan-titania nanobiocomposites. Int. J. Biol. Macromol. 163, 1261–1275. https://doi.org/10.1016/j.ijbiomac.2020.07.066 (2020).
-
Phang, J. M. The regulatory functions of proline and pyrroline-5-carboxylic acid. CTCR 25, 91–132. https://doi.org/10.1016/B978-0-12-152825-6.50008-4 (1985).
-
Hayat, S. et al. Role of proline under changing environments: a review. Plant. Signal. Behav. 7, 1456–1466. https://doi.org/10.4161/psb.21949 (2012).
-
Ibrahim, A. M. M., Awad, A. E., Gendy, A. S. H. & Abdelkader, M. I. A. Effect of proline foliar spray on growth and productivity of sweet Basil (Ocimum Basilicum, L.) plant under salinity stress conditions. Zagazig J. Agric. Res. 46 (6), 1877–1889. https://doi.org/10.21608/zjar.2019.51896 (2016).
-
Renzetti, M., Funck, D., Trovato, M. & Proline A unified mechanism in plant development and stress response? Plants 14 (1), 2. https://doi.org/10.3390/plants14010002 (2024).
-
Daaf, F. et al. Phenolic compounds in plant defense and pathogen counter-defense mechanisms. In Recent Advances in Polyphenol Research (eds Cheynier, V., Sarni-Manchado, P. et al.) 191–208 (Wiley, 2012).
-
Kaur, A., Kaur, M. & Tak, Y. Insights into biotic stress management by plants using phenolic compounds. In Plant Phenolics in Biotic Stress Management (eds Lone, R. & Khan, S.) 75–93 (Springer, 2024).
-
Khan, A. et al. Plant secondary metabolites—central regulators against abiotic and biotic stresses. Metabolites 15, 276. https://doi.org/10.3390/metabo15040276 (2025).
-
Kumar, S. et al. Role of plant secondary metabolites in defense and transcriptional regulation in response to biotic stress. Plant. Stress. 8, 100154. https://doi.org/10.1016/j.stress.2023.100154 (2023).
-
Rashad, Y., Aseel, D. & Hammad, S. Phenolic compounds against fungal and viral plant diseases in Plant phenolics in sustainable agriculture (ed. Lone, R., Shuab, R., Kamili, A.) 201–219 (Springer, 2020).
-
Abdelkhalek, A. et al. chitosan nanoparticles inactivate Alfalfa mosaic virus replication and boost innate immunity in Nicotiana glutinosa plants. Plants 10(12), 2701. https://doi.org/10.3390/plants10122701 (2021).
-
Marslin, G., Sheeba, C. J. & Franklin, G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant. Sci. 8, 832. https://doi.org/10.3389/fpls.2017.00832 (2017).
-
Chung, I. M., Rekha, K., Venkidasamy, B. & Thiruvengadam, M. Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water Air Soil Pollut. 230, 1–14. https://doi.org/10.1007/s11270-018-4051-3 (2019).
-
Kaur, H., Kaur, M., Aggarwal, R., Sharma, S. & Singh, D. Nanocomposite of MgFe2O4 and Mn3O4 as polyphenol oxidase mimic for sensing of polyphenols. Biosensors 12 (6), 428. https://doi.org/10.3390/bios12060428 (2019).
-
Boeckx, T., Winters, A. L., Webb, K. J. & Kingston-Smith, A. H. Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization? J. Exp. Bot. 66 (12), 3571–3579. https://doi.org/10.1093/jxb/erv141 (2015).
-
Zhang, S. Recent advances of polyphenol oxidases in plants. Molecules 28 (5), 2158. https://doi.org/10.3390/molecules28052158 (2023).
-
Kaur, S. et al. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants. 28, 485–504. https://doi.org/10.1007/s12298-022-01146-y (2022).
-
Elsharkawy, M. M. & Mousa, K. M. Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17-2 and silica (SiO2) nanopowder. Int. J. Pest Manag. 61 (4), 353–358. https://doi.org/10.1080/09670874.2015.1070930 (2015).
-
Fang, X. et al. The role of Salicylic acid in plant defense responses against biotic stresses. Plant. Horm. 1, e004. https://doi.org/10.48130/ph-0025-0003 (2025).
-
Tian, H., Xu, L., Li, X. & Zhang, Y. Salicylic acid: the roles in plant immunity and crosstalk with other hormones. JIPB 67 (3), 733–785. https://doi.org/10.1111/jipb.13820 (2025).
-
Kumar, P., Pandey, S. & Pati, P. K. Interaction between pathogenesis-related (PR) proteins and phytohormone signaling pathways in conferring disease tolerance in plants. 177(2), e70174. https://doi.org/10.1111/ppl.70174 (2025).
-
Michel, V. et al. NtTPN1: A RPP8-like R gene required for Potato virus Y-induced veinal necrosis in tobacco. Plant. J. 95, 700–714. https://doi.org/10.1111/tpj.13980 (2018).
-
Otulak-Kozieł, K., Kozieł, E., Bujarski, J. J., Frankowska-Łukawska, J. & Torres, M. A. Respiratory burst oxidase homologs RBOHD and RBOHF as key modulating components of response in Turnip mosaic virus—Arabidopsis Thaliana (L.) Heyhn system. Int. J. Mol. Sci. 21 (22), 8510. https://doi.org/10.3390/ijms21228510 (2020).
-
Wang, L. et al. Genome-wide analysis of the Thaumatin-like gene family in Qingke (Hordeum vulgare L. var. nudum) uncovers candidates involved in plant defense against biotic and abiotic stresses. Front. Plant. Sci. 13, 912226. https://doi.org/10.3389/fpls.2022.912296 (2022).
-
Elvira, M. I., Galdeano, M. M., Gilardi, P., García-Luque, I. & Serra, M. T. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of Pepper mild mottle virus (PMMoV) in Capsicum Chinense L3 plants. J. Exp. Bot. 59 (6), 1253–1265. https://doi.org/10.1093/jxb/ern032 (2008).
-
Padmanabhan, C. et al. Comprehensive transcriptome analysis and functional characterization of PR-5 for its involvement in tomato Sw-7 resistance to Tomato spotted wilt Tospovirus. Sci. Rep. 9 (1), 7673. https://doi.org/10.1038/s41598-019-44100-x (2019).
-
Aseel, D. G. et al. Comparative analysis of the expression profiles of pathogen-related genes in tomato systemically infected with Tobacco mosaic virus and Cucumber mosaic virus. Int. J. Plant. Biol. 14 (2), 458–473. https://doi.org/10.3390/ijpb14020035 (2023).
-
Otulak-Kozieł, K., Kozieł, E. & Lockhart, B. E. L. Plant cell wall dynamics in compatible and incompatible potato response to infection caused by Potato virus Y (PVYNTN). Int. J. Mol. Sci. 19(3), 862; (2018). https://doi.org/10.3390/ijms19030862 (2018).
-
Lay, F. T. & Anderson, M. Defensins-components of the innate immune system in plants. Curr. Pro Pep Sci. 6, 85–101. https://doi.org/10.2174/1389203053027575 (2005).
-
Domingo, G. et al. A comprehensive characterization and expression profiling of defensin family peptides in Arabidopsis Thaliana with a focus on their abiotic stress-specific transcriptional modulation. Curr. Plant. Biol. 39, 100376. https://doi.org/10.1016/j.cpb.2024.100376 (2024).
-
Mitter, N., Kazan, K., Way, H. M., Broekaert, W. F. & Manners, J. M. Systemic induction of an Arabidopsis plant defensin gene promoter by Tobacco mosaic virus and jasmonic acid in Transgenic tobacco. Plant. Sci. 136 (2), 169–180 (1998). -9452(98)00094 – 6.
-
Roberts, K. Long-distance movement of Cauliflower mosaic virus and host defence responses in Arabidopsis follow a predictable pattern that is determined by the leaf orthostichy. New. Phytol. 175, 707–717. https://doi.org/10.1111/j.1469-8137.2007.02136.x (2007).
