References
-
Okunade, K. S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 40 (5), 602–608 (2020).
-
Cutts, F. T. et al. Human papillomavirus and HPV vaccines: a review. Bull. World Health Organ. 85 (9), 719–726 (2007).
-
Kawana, K., Adachi, K., Kojima, S., Kozuma, S. & Fujii, T. Therapeutic human papillomavirus (HPV) vaccines: A novel approach. Open. Virol. J. 6, 264–269 (2012).
-
Castillo, A. et al. Effect of vaccination against oral HPV-16 infection in high school students in the City of Cali, Colombia. Papillomavirus Res. 7, 112–117 (2019).
-
Liu, C. Y. et al. Infection and integration of high-risk human papillomavirus in HPV-associated cancer cells. Med. Oncol. 32 (4), 109 (2015).
-
Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. (Lond). 110 (5), 525–541 (2006).
-
Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189 (1), 12–19 (1999).
-
Parmin, N. A. et al. Human papillomavirus E6 biosensing: current progression on early detection strategies for cervical cancer. Int. J. Biol. Macromol. 126, 877–890 (2019).
-
Zheng, Q. et al. Advancing the fight against cervical cancer: the promise of therapeutic HPV vaccines. Vaccines 13 (1), 92 (2025).
-
Louten, J. Detection and diagnosis of viral infections. Essent. Hum. Virol. 111. (2016).
-
Quinn, M., Babb, P., Jones, J. & Allen, E. Effect of screening on incidence of and mortality from cancer of cervix in england: evaluation based on routinely collected statistics. BMJ 318 (7188), 904–908 (1999).
-
Koss, L. G. The Papanicolaou test for cervical cancer detection. A triumph and a tragedy. JAMA 261 (5), 737–743 (1989).
-
Deshpande, V. & on process, P. Survey on process and classification of cervical cancer for the neural pap system. Int. J. ;3(10), 1-4 (2018).
-
Bartosik, M., Jirakova, L., Anton, M., Vojtesek, B. & Hrstka, R. Genomagnetic LAMP-based electrochemical test for determination of high-risk HPV16 and HPV18 in clinical samples. Anal. Chim. Acta. 1042, 37–43 (2018).
-
Eide, M. L. & Debaque, H. (eds) HPV Detection Methods and Genotyping Techniques in Screening for Cervical cancer. Annales De Pathologie (Elsevier, 2012).
-
Chen, S-H. et al. Optical detection of human papillomavirus type 16 and type 18 by sequence sandwich hybridization with oligonucleotide-functionalized Au nanoparticles. IEEE Trans. Nanobiosci. 8 (2), 120–131 (2009).
-
Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105 (4), 1547–1562 (2005).
-
Lin, C-A-J. et al. Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J. Med. Biol. Eng. 29 (6), 276–283 (2009).
-
Baptista, P. et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal. Bioanal Chem. 391 (3), 943–950 (2008).
-
Borghei, Y. S. & Hosseinkhani, S. Colorimetric assay of apoptosis through in-situ biosynthesized gold nanoparticles inside living breast cancer cells. Talanta 208, 120463 (2020).
-
Li, Y., Schluesener, H. J. & Xu, S. Gold nanoparticle-based biosensors. Gold Bull. 43, 29–41 (2010).
-
Scodeller, P. et al. Wired-enzyme core – shell Au nanoparticle biosensor. J. Am. Chem. Soc. 130 (38), 12690–12697 (2008).
-
Mohammed, A. M. Fabrication and characterization of gold nano particles for DNA biosensor applications. Chin. Chem. Lett. 27 (5), 801–806 (2016).
-
Aiken, I. I. I. J. D. & Finke, R. G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 145 (1–2), 1–44 (1999).
-
Qian, H., Zhu, M., Wu, Z. & Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45 (9), 1470–1479 (2012).
-
Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum Dots. Science 271 (5251), 933–937 (1996).
-
Cui, D. et al. Fluorescent magnetic nanoprobes for in vivo targeted imaging and hyperthermia therapy of prostate cancer. Nano Biomed. Eng. 1 (1), 94–112 (2009).
-
Lin, J. et al. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging. Nanoscale Res. Lett. 8, 1–7 (2013).
-
Su, J., Yoon, B-J. & Dougherty, E. R. Accurate and reliable cancer classification based on probabilistic inference of pathway activity. PloS One. 4 (12), e8161 (2009).
-
Janssens, A. C. J. & van Duijn, C. M. Genome-based prediction of common diseases: methodological considerations for future research. Genome Med. 1, 1–9 (2009).
-
Lian, W. et al. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal. Biochem. 334 (1), 135–144 (2004).
-
Dadmehr, M., Mortezaei, M. & Korouzhdehi, B. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@ gelatin/AuNCs nanocomposite. Biosens. Bioelectron. 220, 114889 (2023).
-
Luo, Q. et al. Multicolor biosensor for trypsin detection based on the regulation of the peroxidase activity of bovine serum albumin-coated gold nanoclusters and etching of gold nanobipyramids. Anal. Chem. 95 (4), 2390–2397 (2023).
-
Lu, W. et al. Quantitative investigation of the poly-adenine DNA dissociation from the surface of gold nanoparticles. Sci. Rep. 5, 10158 (2015).
-
Zhu, D. et al. PolyA-Mediated DNA assembly on gold nanoparticles for thermodynamically favorable and rapid hybridization analysis. Anal. Chem. 88 (9), 4949–4954 (2016).
-
Kennedy, T. A., MacLean, J. L. & Liu, J. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chem. Commun. (Camb). 48 (54), 6845–6847 (2012).
-
Wang, H. B., Bai, H. Y., Mao, A. L., Gan, T. & Liu, Y. M. Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine. Spectrochim Acta Mol. Biomol. Spectrosc. 219, 375–381 (2019).
-
Zhu, D. et al. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical dnazymes. Nanoscale 7 (44), 18671–18676 (2015).
-
Xia, D-L. et al. Influence of reducing agents on biosafety and biocompatibility of gold nanoparticles. Appl. Biochem. Biotechnol. 174 (7), 2458–2470 (2014).
-
Dachlika, H., Stern, A., Rotem, D. & Porath, D. Formation of dimers composed of a single short DsDNA connecting two gold nanoparticles. J. Self-Assem Mol. Electron. 1, 85–99 (2013).
-
Avelino, K. Y., Oliveira, L. S., Lucena-Silva, N., Andrade, C. A. & Oliveira, M. D. Flexible sensor based on conducting polymer and gold nanoparticles for electrochemical screening of HPV families in cervical specimens. Talanta 226, 122118 (2021).
-
Pareek, S., Jain, U., Bharadwaj, M. & Chauhan, N. A label free nanosensing platform for the detection of cervical cancer through analysis of Ultratrace DNA hybridization. Sens. Bio-Sensing Res. 33, 100444 (2021).
-
Pareek, S. et al. An ultrasensitive electrochemical DNA biosensor for monitoring human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids. Anal. Biochem. 663, 115015 (2023).
-
Rasouli, E. et al. Electrochemical DNA-nano biosensor for the detection of cervical cancer-causing HPV-16 using ultrasmall Fe3O4-Au core-shell nanoparticles. Sens. Bio-Sensing Res. 40, 100562 (2023).
-
Sun, Y., Liu, J., Peng, X., Zhang, G. & Li, Y. A novel photoelectrochemical array platform for ultrasensitive multiplex detection and subtype identification of HPV genes. Biosens. Bioelectron. 224, 115059 (2023).
-
Cheng, Y. et al. Photoelectrochemical biosensor based on SiW12@ cds quantum Dots for the highly sensitive detection of HPV 16 DNA. Front. Bioeng. Biotechnol. 11, 1193052 (2023).
-
Yu, L. et al. Sensitive and amplification-free electrochemiluminescence biosensor for HPV-16 detection based on CRISPR/Cas12a and DNA tetrahedron nanostructures. ACS Sens. 8 (7), 2852–2858 (2023).
-
Yu, J., Dong, C., Yang, Y., Yu, S. & Chen, T. Electrochemical DNA biosensor for HPV-16 detection based on novel carbon quantum dots/APTES composite nanofilm. Microchem. J. 204, 110949 (2024).
-
Gong, S. et al. CRISPR-Cas12a-mediated dual-enzyme cascade amplification for sensitive colorimetric detection of HPV-16 target and ATP. Talanta 266, 125050 (2024).
-
Hu, J. et al. Highly sensitive and specific detection of human papillomavirus type 16 using CRISPR/Cas12a assay coupled with an enhanced single nanoparticle dark-field microscopy imaging technique. Talanta 278, 126449 (2024).
-
Dantas, H. B. et al. Genosensor based on polypyrrole and dendrimer-coated gold nanoparticles for human papillomavirus detection. Biochem. Eng. J. 213, 109551 (2025).
-
Wang, L., Song, N., Zhong, M. & Liu, Z. Graphene-Gold nanoparticle Composite-Based electrochemical biosensor for human papilomavirus detection. Int. J. Electrochem. Sci. 20 (6), 101014 (2025).
-
Rus, Y. B. et al. Versatile one-pot synthesis of gold nanoclusters and nanoparticles using 3, 6-(dipyridin-2-yl)-(1, 2, 4, 5)-tetrazine. RSC Adv. 11 (12), 7043–7050 (2021).
-
Lu, Y. & Chen, W. Progress in the synthesis and characterization of gold nanoclusters. Gold Clusters, Colloids and Nanoparticles I. 117 – 53 (2014).
-
Borghei, Y. S. & Hosseinkhani, S. Building polyvalent DNA-Functionalized anisotropic AuNPs using Poly‐Guanine‐Mediated In‐Situ synthesis for LSPR‐Based assays: case study on OncomiR‐155. Photochem. Photobiol. 98 (5), 1043–1049 (2022).
-
Park, S. DNA conjugation to nanoparticles. Nanomaterial Interfaces Biology: Methods Protocols. 1025, 9–18. (2013).
-
Zhao, W., Lin, L. & Hsing, I. M. Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation. Bioconjug. Chem. 20 (6), 1218–1222 (2009).
-
Borghei, Y. S., Samadikhah, H. R. & Hosseinkhani, S. Exploitation of N-Gene of SARS-CoV-2 to develop a new rapid assay by ASOs@AuNPs. Anal. Chem. 94 (39), 13616–13622 (2022).
-
Zhang, X., Liu, B., Servos, M. R. & Liu, J. Polarity control for nonthiolated DNA adsorption onto gold nanoparticles. Langmuir 29 (20), 6091–6098 (2013).
-
Wang, L. et al. Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. Biosens. Bioelectron. 127, 85–91 (2019).
-
Wang, H-Q. & Deng, Z-X. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett. 26 (12), 1435–1438 (2015).
-
Li, H. & Rothberg, L. J. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Chem. 76 (18), 5414–5417 (2004).
-
Xi, D. et al. The detection of HBV DNA with gold nanoparticle gene probes. J. Nanjing Med. Univ. 21 (4), 207–212 (2007).
-
Cai, H., Wang, Y., He, P. & Fang, Y. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal. Chim. Acta. 469 (2), 165–172 (2002).
-
Dutta, A., Paul, A. & Chattopadhyay, A. The effect of temperature on the aggregation kinetics of partially bare gold nanoparticles. RSC Adv. 6 (85), 82138–82149 (2016).
