Simple and efficient co-synthesis of gold nanoparticles and nanoclusters for HPV-16 detection

simple-and-efficient-co-synthesis-of-gold-nanoparticles-and-nanoclusters-for-hpv-16-detection
Simple and efficient co-synthesis of gold nanoparticles and nanoclusters for HPV-16 detection

References

  1. Okunade, K. S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 40 (5), 602–608 (2020).

    Google Scholar 

  2. Cutts, F. T. et al. Human papillomavirus and HPV vaccines: a review. Bull. World Health Organ. 85 (9), 719–726 (2007).

    Google Scholar 

  3. Kawana, K., Adachi, K., Kojima, S., Kozuma, S. & Fujii, T. Therapeutic human papillomavirus (HPV) vaccines: A novel approach. Open. Virol. J. 6, 264–269 (2012).

    Google Scholar 

  4. Castillo, A. et al. Effect of vaccination against oral HPV-16 infection in high school students in the City of Cali, Colombia. Papillomavirus Res. 7, 112–117 (2019).

    Google Scholar 

  5. Liu, C. Y. et al. Infection and integration of high-risk human papillomavirus in HPV-associated cancer cells. Med. Oncol. 32 (4), 109 (2015).

    Google Scholar 

  6. Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. (Lond). 110 (5), 525–541 (2006).

    Google Scholar 

  7. Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189 (1), 12–19 (1999).

    Google Scholar 

  8. Parmin, N. A. et al. Human papillomavirus E6 biosensing: current progression on early detection strategies for cervical cancer. Int. J. Biol. Macromol. 126, 877–890 (2019).

    Google Scholar 

  9. Zheng, Q. et al. Advancing the fight against cervical cancer: the promise of therapeutic HPV vaccines. Vaccines 13 (1), 92 (2025).

    Google Scholar 

  10. Louten, J. Detection and diagnosis of viral infections. Essent. Hum. Virol. 111. (2016).

  11. Quinn, M., Babb, P., Jones, J. & Allen, E. Effect of screening on incidence of and mortality from cancer of cervix in england: evaluation based on routinely collected statistics. BMJ 318 (7188), 904–908 (1999).

    Google Scholar 

  12. Koss, L. G. The Papanicolaou test for cervical cancer detection. A triumph and a tragedy. JAMA 261 (5), 737–743 (1989).

    Google Scholar 

  13. Deshpande, V. & on process, P. Survey on process and classification of cervical cancer for the neural pap system. Int. J. ;3(10), 1-4 (2018).

  14. Bartosik, M., Jirakova, L., Anton, M., Vojtesek, B. & Hrstka, R. Genomagnetic LAMP-based electrochemical test for determination of high-risk HPV16 and HPV18 in clinical samples. Anal. Chim. Acta. 1042, 37–43 (2018).

    Google Scholar 

  15. Eide, M. L. & Debaque, H. (eds) HPV Detection Methods and Genotyping Techniques in Screening for Cervical cancer. Annales De Pathologie (Elsevier, 2012).

  16. Chen, S-H. et al. Optical detection of human papillomavirus type 16 and type 18 by sequence sandwich hybridization with oligonucleotide-functionalized Au nanoparticles. IEEE Trans. Nanobiosci. 8 (2), 120–131 (2009).

    Google Scholar 

  17. Rosi, N. L. & Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 105 (4), 1547–1562 (2005).

    Google Scholar 

  18. Lin, C-A-J. et al. Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J. Med. Biol. Eng. 29 (6), 276–283 (2009).

    Google Scholar 

  19. Baptista, P. et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal. Bioanal Chem. 391 (3), 943–950 (2008).

    Google Scholar 

  20. Borghei, Y. S. & Hosseinkhani, S. Colorimetric assay of apoptosis through in-situ biosynthesized gold nanoparticles inside living breast cancer cells. Talanta 208, 120463 (2020).

    Google Scholar 

  21. Li, Y., Schluesener, H. J. & Xu, S. Gold nanoparticle-based biosensors. Gold Bull. 43, 29–41 (2010).

    Google Scholar 

  22. Scodeller, P. et al. Wired-enzyme core – shell Au nanoparticle biosensor. J. Am. Chem. Soc. 130 (38), 12690–12697 (2008).

    Google Scholar 

  23. Mohammed, A. M. Fabrication and characterization of gold nano particles for DNA biosensor applications. Chin. Chem. Lett. 27 (5), 801–806 (2016).

    Google Scholar 

  24. Aiken, I. I. I. J. D. & Finke, R. G. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 145 (1–2), 1–44 (1999).

    Google Scholar 

  25. Qian, H., Zhu, M., Wu, Z. & Jin, R. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 45 (9), 1470–1479 (2012).

    Google Scholar 

  26. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum Dots. Science 271 (5251), 933–937 (1996).

    Google Scholar 

  27. Cui, D. et al. Fluorescent magnetic nanoprobes for in vivo targeted imaging and hyperthermia therapy of prostate cancer. Nano Biomed. Eng. 1 (1), 94–112 (2009).

    Google Scholar 

  28. Lin, J. et al. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging. Nanoscale Res. Lett. 8, 1–7 (2013).

    Google Scholar 

  29. Su, J., Yoon, B-J. & Dougherty, E. R. Accurate and reliable cancer classification based on probabilistic inference of pathway activity. PloS One. 4 (12), e8161 (2009).

    Google Scholar 

  30. Janssens, A. C. J. & van Duijn, C. M. Genome-based prediction of common diseases: methodological considerations for future research. Genome Med. 1, 1–9 (2009).

    Google Scholar 

  31. Lian, W. et al. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal. Biochem. 334 (1), 135–144 (2004).

    Google Scholar 

  32. Dadmehr, M., Mortezaei, M. & Korouzhdehi, B. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@ gelatin/AuNCs nanocomposite. Biosens. Bioelectron. 220, 114889 (2023).

    Google Scholar 

  33. Luo, Q. et al. Multicolor biosensor for trypsin detection based on the regulation of the peroxidase activity of bovine serum albumin-coated gold nanoclusters and etching of gold nanobipyramids. Anal. Chem. 95 (4), 2390–2397 (2023).

    Google Scholar 

  34. Lu, W. et al. Quantitative investigation of the poly-adenine DNA dissociation from the surface of gold nanoparticles. Sci. Rep. 5, 10158 (2015).

    Google Scholar 

  35. Zhu, D. et al. PolyA-Mediated DNA assembly on gold nanoparticles for thermodynamically favorable and rapid hybridization analysis. Anal. Chem. 88 (9), 4949–4954 (2016).

    Google Scholar 

  36. Kennedy, T. A., MacLean, J. L. & Liu, J. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chem. Commun. (Camb). 48 (54), 6845–6847 (2012).

    Google Scholar 

  37. Wang, H. B., Bai, H. Y., Mao, A. L., Gan, T. & Liu, Y. M. Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine. Spectrochim Acta Mol. Biomol. Spectrosc. 219, 375–381 (2019).

    Google Scholar 

  38. Zhu, D. et al. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical dnazymes. Nanoscale 7 (44), 18671–18676 (2015).

    Google Scholar 

  39. Xia, D-L. et al. Influence of reducing agents on biosafety and biocompatibility of gold nanoparticles. Appl. Biochem. Biotechnol. 174 (7), 2458–2470 (2014).

    Google Scholar 

  40. Dachlika, H., Stern, A., Rotem, D. & Porath, D. Formation of dimers composed of a single short DsDNA connecting two gold nanoparticles. J. Self-Assem Mol. Electron. 1, 85–99 (2013).

    Google Scholar 

  41. Avelino, K. Y., Oliveira, L. S., Lucena-Silva, N., Andrade, C. A. & Oliveira, M. D. Flexible sensor based on conducting polymer and gold nanoparticles for electrochemical screening of HPV families in cervical specimens. Talanta 226, 122118 (2021).

    Google Scholar 

  42. Pareek, S., Jain, U., Bharadwaj, M. & Chauhan, N. A label free nanosensing platform for the detection of cervical cancer through analysis of Ultratrace DNA hybridization. Sens. Bio-Sensing Res. 33, 100444 (2021).

    Google Scholar 

  43. Pareek, S. et al. An ultrasensitive electrochemical DNA biosensor for monitoring human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids. Anal. Biochem. 663, 115015 (2023).

    Google Scholar 

  44. Rasouli, E. et al. Electrochemical DNA-nano biosensor for the detection of cervical cancer-causing HPV-16 using ultrasmall Fe3O4-Au core-shell nanoparticles. Sens. Bio-Sensing Res. 40, 100562 (2023).

    Google Scholar 

  45. Sun, Y., Liu, J., Peng, X., Zhang, G. & Li, Y. A novel photoelectrochemical array platform for ultrasensitive multiplex detection and subtype identification of HPV genes. Biosens. Bioelectron. 224, 115059 (2023).

    Google Scholar 

  46. Cheng, Y. et al. Photoelectrochemical biosensor based on SiW12@ cds quantum Dots for the highly sensitive detection of HPV 16 DNA. Front. Bioeng. Biotechnol. 11, 1193052 (2023).

    Google Scholar 

  47. Yu, L. et al. Sensitive and amplification-free electrochemiluminescence biosensor for HPV-16 detection based on CRISPR/Cas12a and DNA tetrahedron nanostructures. ACS Sens. 8 (7), 2852–2858 (2023).

    Google Scholar 

  48. Yu, J., Dong, C., Yang, Y., Yu, S. & Chen, T. Electrochemical DNA biosensor for HPV-16 detection based on novel carbon quantum dots/APTES composite nanofilm. Microchem. J. 204, 110949 (2024).

    Google Scholar 

  49. Gong, S. et al. CRISPR-Cas12a-mediated dual-enzyme cascade amplification for sensitive colorimetric detection of HPV-16 target and ATP. Talanta 266, 125050 (2024).

    Google Scholar 

  50. Hu, J. et al. Highly sensitive and specific detection of human papillomavirus type 16 using CRISPR/Cas12a assay coupled with an enhanced single nanoparticle dark-field microscopy imaging technique. Talanta 278, 126449 (2024).

    Google Scholar 

  51. Dantas, H. B. et al. Genosensor based on polypyrrole and dendrimer-coated gold nanoparticles for human papillomavirus detection. Biochem. Eng. J. 213, 109551 (2025).

    Google Scholar 

  52. Wang, L., Song, N., Zhong, M. & Liu, Z. Graphene-Gold nanoparticle Composite-Based electrochemical biosensor for human papilomavirus detection. Int. J. Electrochem. Sci. 20 (6), 101014 (2025).

  53. Rus, Y. B. et al. Versatile one-pot synthesis of gold nanoclusters and nanoparticles using 3, 6-(dipyridin-2-yl)-(1, 2, 4, 5)-tetrazine. RSC Adv. 11 (12), 7043–7050 (2021).

    Google Scholar 

  54. Lu, Y. & Chen, W. Progress in the synthesis and characterization of gold nanoclusters. Gold Clusters, Colloids and Nanoparticles I. 117 – 53 (2014).

  55. Borghei, Y. S. & Hosseinkhani, S. Building polyvalent DNA-Functionalized anisotropic AuNPs using Poly‐Guanine‐Mediated In‐Situ synthesis for LSPR‐Based assays: case study on OncomiR‐155. Photochem. Photobiol. 98 (5), 1043–1049 (2022).

    Google Scholar 

  56. Park, S. DNA conjugation to nanoparticles. Nanomaterial Interfaces Biology: Methods Protocols. 1025, 9–18. (2013).

  57. Zhao, W., Lin, L. & Hsing, I. M. Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation. Bioconjug. Chem. 20 (6), 1218–1222 (2009).

    Google Scholar 

  58. Borghei, Y. S., Samadikhah, H. R. & Hosseinkhani, S. Exploitation of N-Gene of SARS-CoV-2 to develop a new rapid assay by ASOs@AuNPs. Anal. Chem. 94 (39), 13616–13622 (2022).

    Google Scholar 

  59. Zhang, X., Liu, B., Servos, M. R. & Liu, J. Polarity control for nonthiolated DNA adsorption onto gold nanoparticles. Langmuir 29 (20), 6091–6098 (2013).

    Google Scholar 

  60. Wang, L. et al. Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. Biosens. Bioelectron. 127, 85–91 (2019).

    Google Scholar 

  61. Wang, H-Q. & Deng, Z-X. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett. 26 (12), 1435–1438 (2015).

    Google Scholar 

  62. Li, H. & Rothberg, L. J. DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Chem. 76 (18), 5414–5417 (2004).

    Google Scholar 

  63. Xi, D. et al. The detection of HBV DNA with gold nanoparticle gene probes. J. Nanjing Med. Univ. 21 (4), 207–212 (2007).

    Google Scholar 

  64. Cai, H., Wang, Y., He, P. & Fang, Y. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal. Chim. Acta. 469 (2), 165–172 (2002).

    Google Scholar 

  65. Dutta, A., Paul, A. & Chattopadhyay, A. The effect of temperature on the aggregation kinetics of partially bare gold nanoparticles. RSC Adv. 6 (85), 82138–82149 (2016).

    Google Scholar 

Download references