Single-round evolution of RNA aptamers with GRAPE-LM

single-round-evolution-of-rna-aptamers-with-grape-lm
Single-round evolution of RNA aptamers with GRAPE-LM
  • Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Lang, M., Zhou, Y. & Zhang, Y. Predicting RNA structures and functions by artificial intelligence. Trends Genet. 40, 94–107 (2024).

    Article  Google Scholar 

  • Hayes, T. et al. Simulating 500 million years of evolution with a language model. Science 387, 850–858 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, K. et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 387, eadr6006 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Bunka, D. H. J. & Stockley, P. G. Aptamers come of age – at last. Nat. Rev. Microbiol. 4, 588–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Juhas, M. & Kwok, C. K. Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19. Trends Biotechnol. 41, 528–544 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Lai, B. S. & Juhas, M. Recent advances in aptamer discovery and applications. Molecules 24, 941 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas-Montes, M. et al. Enzyme-linked aptamer assay (ELAA) for detection of toxoplasma ROP18 protein in human serum. Front. Cell. Infect. Microbiol. 9, 386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. et al. Repurposing CRISPR/Cas to discover SARS-CoV-2 detecting and neutralizing aptamers. Adv. Sci. 10, 2300656 (2023).

    Article  CAS  Google Scholar 

  • Su-Tobon, Q. et al. CRISPR-Hybrid: a CRISPR-mediated intracellular directed evolution platform for RNA aptamers. Nat. Commun. 16, 595 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwano, N., Adachi, T., Aoki, K., Nakamura, Y. & Hamada, M. Generative aptamer discovery using RaptGen. Nat. Comput. Sci. 2, 378–386 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. et al. AptaDiff: de novo design and optimization of aptamers based on diffusion models. Brief. Bioinform. 25, bbae517 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, F. et al. Deep generative design of RNA aptamers using structural predictions. Nat. Comput. Sci. 4, 829–839 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X. et al. ProRefiner: an entropy-based refining strategy for inverse protein folding with global graph attention. Nat. Commun. 14, 7434 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, M., Yu, C., Bu, D. & Zhang, H. Accurate and robust protein sequence design with CarbonDesign. Nat. Mach. Intell. 6, 536–547 (2024).

    Article  Google Scholar 

  • Lee, G., Jang, G. H., Kang, H. Y. & Song, G. Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach. PLoS ONE 16, e0253760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, I. et al. AptaTrans: a deep neural network for predicting aptamer-protein interaction using pretrained encoders. BMC Bioinformatics 24, 447 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, S. et al. AptaBLE: an enhanced deep learning platform for aptamer protein interaction prediction and design. In Machine Learning for Structural Biology Workshop, NeurIPS 2024 https://www.mlsb.io/papers_2024/AptaBLE:_An_Enhanced_Deep_Learning_Platform_for_Aptamer_Protein_Interaction_Prediction_and_Design.pdf (2024).

  • Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Nithin, C., Kmiecik, S., Błaszczyk, R., Nowicka, J. & Tuszyńska, I. Comparative analysis of RNA 3D structure prediction methods: towards enhanced modeling of RNA–ligand interactions. Nucleic Acids Res. 52, 7465–7486 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L. T. et al. Target sequence-conditioned design of peptide binders using masked language modeling. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02761-2 (2025).

  • Torres, M. D. T., Chen, L. T., Wan, F., Chatterjee, P. & de la Fuente-Nunez, C. Generative latent diffusion language modeling yields anti-infective synthetic peptides. Cell Biomat. https://doi.org/10.1016/j.celbio.2025.100183 (2025).

  • Shen, T. et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat. Methods 21, 2287–2298 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama, M. & Sakakibara, Y. Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning. NAR Genom. Bioinform. 4, lqac012 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, N. et al. Multi-purpose RNA language modelling with motif-aware pretraining and type-guided fine-tuning. Nat. Mach. Intell. 6, 548–557 (2024).

    Article  Google Scholar 

  • Patel, S., Peng, F. Z., Fraser, K., Chatterjee, P. & Yao, S. EvoFlow-RNA: generating and representing non-coding RNA with a language model. Preprint at bioRxiv https://doi.org/10.1101/2025.02.25.639942 (2025).

  • Penić, R. J., Vlašić, T., Huber, R. G., Wan, Y. & Šikić, M. RiNALMo: general-purpose RNA language models can generalize well on structure prediction tasks. Nat. Commun. 16, 5671 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida, R. et al. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Nucleic Acids Res. 48, e82 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Freage, L., Jamal, D., Williams, N. B. & Mallikaratchy, P. R. A homodimeric aptamer variant generated from ligand-guided selection activates the T cell receptor cluster of differentiation 3 complex. Mol. Ther. Nucleic Acids 22, 167–178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zumrut, H. et al. Ligand-guided selection with artificially expanded genetic information systems against TCR-CD3ε. Biochemistry 59, 552–562 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Zumrut, H. E. et al. Integrating ligand-receptor interactions and in vitro evolution for streamlined discovery of artificial nucleic acid ligands. Mol. Ther. Nucleic Acids 17, 150–163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raddatz, M.-S. L. et al. Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew. Chem. Int. Ed. Engl. 47, 5190–5193 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Nakhjavani, M. et al. A flow cytometry-based cell surface protein binding assay for assessing selectivity and specificity of an anticancer aptamer. J. Vis. Exp. 187, e64304 (2022).

    Google Scholar 

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Zhang, S., Zhang, D. & Chen, S.-J. Vfold-Pipeline: a web server for RNA 3D structure prediction from sequences. Bioinformatics 38, 4042–4043 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretsch, R. C. et al. Functional relevance of CASP16 nucleic acid predictions as evaluated by structure providers. Proteins 94, 51–78 (2026).

    Article  CAS  PubMed  Google Scholar 

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  Google Scholar 

  • Yan, Y., Tao, H., He, J. & Huang, S.-Y. The HDOCK server for integrated protein–protein docking. Nat. Protocols 15, 1829–1852 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Valero, J. et al. A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proc. Natl Acad. Sci. USA 118, e2112942118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, M. et al. Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew. Chem. Int. Ed. Engl. 60, 10266–10272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoschik, T. et al. Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale Thermophoresis. Sci. Rep. 8, 4977 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, Y. et al. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 92, 9895–9900 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Li, J. et al. Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Res. 49, 7267–7279 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X. et al. Neutralizing aptamers block S/RBD−ACE2 interactions and prevent host cell infection. Angew. Chem. Int. Ed. Engl. 60, 10273–10278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, G. et al. Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduct. Target Ther. 6, 227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves Ferreira-Bravo, I. & DeStefano, J. J. Xeno-nucleic acid (XNA) 2′-fluoro-arabino nucleic acid (FANA) aptamers to the receptor-binding domain of SARS-CoV-2 S protein block ACE2 binding. Viruses 13, 1983 (2021).

  • Saify Nabiabad, H., Amini, M. & Demirdas, S. Specific delivering of RNAi using spike’s aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: a strong anti-Covid drug in a clinical case study. Chem. Biol. Drug Des. 99, 233–246 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, C. et al. Transversions have larger regulatory effects than transitions. BMC Genomics 18, 394 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, M. et al. Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape. J. Am. Chem. Soc. 143, 21541–21548 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Dang, C. V., Reddy, E. P., Shokat, K. M. & Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 17, 502–508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. et al. Antitumor effect of anti-c-Myc aptamer-based PROTAC for degradation of the c-Myc protein. Adv. Sci. 11, 2309639 (2024).

    Article  CAS  Google Scholar 

  • He, J., Spokoyny, D., Neubig, G. & Berg-Kirkpatrick, T. Lagging inference networks and posterior collapse in variational autoencoders. In The Seventh International Conference on Learning Representations https://openreview.net/pdf/47f79f4015dbabc7f2eab6e432cddf975cf1c486.pdf (ICLR, 2019).

  • Dieng, A. B., Kim, Y., Rush, A. M. & Blei, D. M. Avoiding latent variable collapse with generative skip models. In Proc. Twenty-Second International Conference on Artificial Intelligence and Statistics (eds Kamalika, C. & Masashi, S.) 2397–2405 (PMLR, 2019).

  • Hawkins-Hooker, A. et al. Generating functional protein variants with variational autoencoders. PLoS Comput. Biol. 17, e1008736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Shine, M., Pyle, A. M. & Zhang, Y. US-align: universal structure alignments of proteins, nucleic acids, and macromolecular complexes. Nat. Methods 19, 1109–1115 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Madeira, F. et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52, W521–W525 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 13, 4348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, B., Kaplan, D. L. & Buehler, M. J. ForceGen: end-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model. Sci. Adv. 10, eadl4000 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q. et al. Integrating protein language models and automatic biofoundry for enhanced protein evolution. Nat. Commun. 16, 1553 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A. Protein language models guide directed antibody evolution. Nat. Methods 20, 785 (2023).

    Article  PubMed  Google Scholar 

  • Dalla-Torre, H. et al. Nucleotide Transformer: building and evaluating robust foundation models for human genomics. Nat. Methods 22, 287–297 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Vaswani, A. et al. Attention is all you need. In Proc. 31st International Conference on Neural Information Processing Systems 6000–6010 (Curran Associates, 2017).

  • Castro, E. et al. Transformer-based protein generation with regularized latent space optimization. Nat. Mach. Intell. 4, 840–851 (2022).

    Article  Google Scholar 

  • Ferruz, N. & Höcker, B. Controllable protein design with language models. Nat. Mach. Intell. 4, 521–532 (2022).

    Article  Google Scholar 

  • Nguyen Quang, N., Bouvier, C., Henriques, A., Lelandais, B. & Ducongé, F. Time-lapse imaging of molecular evolution by high-throughput sequencing. Nucleic Acids Res. 46, 7480–7494 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan, C. Y. et al. A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 10, S33 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Molejon, N. A. et al. Selection of G-rich ssDNA aptamers for the detection of enterotoxins of the cholera toxin family. Anal. Biochem. 669, 115118 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Melikishvili, M. et al. SELEX identifies high-affinity RNA targets for chromatin-binding proteins PARP1 and MeCP2. iScience 28, 113299 (2025).

  • Thiel, W. H. et al. Nucleotide bias observed with a short SELEX RNA aptamer library. Nucleic Acid Ther. 21, 253–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J. et al. CRISmers NGS data used and generated by GRAPE-LM (1.0). Zenodo https://doi.org/10.5281/zenodo.18005327 (2025).