Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).
Zhang, J., Lang, M., Zhou, Y. & Zhang, Y. Predicting RNA structures and functions by artificial intelligence. Trends Genet. 40, 94–107 (2024).
Hayes, T. et al. Simulating 500 million years of evolution with a language model. Science 387, 850–858 (2025).
Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).
Jiang, K. et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 387, eadr6006 (2025).
Bunka, D. H. J. & Stockley, P. G. Aptamers come of age – at last. Nat. Rev. Microbiol. 4, 588–596 (2006).
Zhang, Y., Juhas, M. & Kwok, C. K. Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19. Trends Biotechnol. 41, 528–544 (2023).
Zhang, Y., Lai, B. S. & Juhas, M. Recent advances in aptamer discovery and applications. Molecules 24, 941 (2019).
Vargas-Montes, M. et al. Enzyme-linked aptamer assay (ELAA) for detection of toxoplasma ROP18 protein in human serum. Front. Cell. Infect. Microbiol. 9, 386 (2019).
Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).
Zhang, J. et al. Repurposing CRISPR/Cas to discover SARS-CoV-2 detecting and neutralizing aptamers. Adv. Sci. 10, 2300656 (2023).
Su-Tobon, Q. et al. CRISPR-Hybrid: a CRISPR-mediated intracellular directed evolution platform for RNA aptamers. Nat. Commun. 16, 595 (2025).
Iwano, N., Adachi, T., Aoki, K., Nakamura, Y. & Hamada, M. Generative aptamer discovery using RaptGen. Nat. Comput. Sci. 2, 378–386 (2022).
Wang, Z. et al. AptaDiff: de novo design and optimization of aptamers based on diffusion models. Brief. Bioinform. 25, bbae517 (2024).
Wong, F. et al. Deep generative design of RNA aptamers using structural predictions. Nat. Comput. Sci. 4, 829–839 (2024).
Zhou, X. et al. ProRefiner: an entropy-based refining strategy for inverse protein folding with global graph attention. Nat. Commun. 14, 7434 (2023).
Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).
Ren, M., Yu, C., Bu, D. & Zhang, H. Accurate and robust protein sequence design with CarbonDesign. Nat. Mach. Intell. 6, 536–547 (2024).
Lee, G., Jang, G. H., Kang, H. Y. & Song, G. Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach. PLoS ONE 16, e0253760 (2021).
Shin, I. et al. AptaTrans: a deep neural network for predicting aptamer-protein interaction using pretrained encoders. BMC Bioinformatics 24, 447 (2023).
Patel, S. et al. AptaBLE: an enhanced deep learning platform for aptamer protein interaction prediction and design. In Machine Learning for Structural Biology Workshop, NeurIPS 2024 https://www.mlsb.io/papers_2024/AptaBLE:_An_Enhanced_Deep_Learning_Platform_for_Aptamer_Protein_Interaction_Prediction_and_Design.pdf (2024).
Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).
Nithin, C., Kmiecik, S., Błaszczyk, R., Nowicka, J. & Tuszyńska, I. Comparative analysis of RNA 3D structure prediction methods: towards enhanced modeling of RNA–ligand interactions. Nucleic Acids Res. 52, 7465–7486 (2024).
Chen, L. T. et al. Target sequence-conditioned design of peptide binders using masked language modeling. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02761-2 (2025).
Torres, M. D. T., Chen, L. T., Wan, F., Chatterjee, P. & de la Fuente-Nunez, C. Generative latent diffusion language modeling yields anti-infective synthetic peptides. Cell Biomat. https://doi.org/10.1016/j.celbio.2025.100183 (2025).
Shen, T. et al. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Nat. Methods 21, 2287–2298 (2024).
Akiyama, M. & Sakakibara, Y. Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning. NAR Genom. Bioinform. 4, lqac012 (2022).
Wang, N. et al. Multi-purpose RNA language modelling with motif-aware pretraining and type-guided fine-tuning. Nat. Mach. Intell. 6, 548–557 (2024).
Patel, S., Peng, F. Z., Fraser, K., Chatterjee, P. & Yao, S. EvoFlow-RNA: generating and representing non-coding RNA with a language model. Preprint at bioRxiv https://doi.org/10.1101/2025.02.25.639942 (2025).
Penić, R. J., Vlašić, T., Huber, R. G., Wan, Y. & Šikić, M. RiNALMo: general-purpose RNA language models can generalize well on structure prediction tasks. Nat. Commun. 16, 5671 (2025).
Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).
Ishida, R. et al. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Nucleic Acids Res. 48, e82 (2020).
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
Freage, L., Jamal, D., Williams, N. B. & Mallikaratchy, P. R. A homodimeric aptamer variant generated from ligand-guided selection activates the T cell receptor cluster of differentiation 3 complex. Mol. Ther. Nucleic Acids 22, 167–178 (2020).
Zumrut, H. et al. Ligand-guided selection with artificially expanded genetic information systems against TCR-CD3ε. Biochemistry 59, 552–562 (2020).
Zumrut, H. E. et al. Integrating ligand-receptor interactions and in vitro evolution for streamlined discovery of artificial nucleic acid ligands. Mol. Ther. Nucleic Acids 17, 150–163 (2019).
Raddatz, M.-S. L. et al. Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew. Chem. Int. Ed. Engl. 47, 5190–5193 (2008).
Nakhjavani, M. et al. A flow cytometry-based cell surface protein binding assay for assessing selectivity and specificity of an anticancer aptamer. J. Vis. Exp. 187, e64304 (2022).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Li, J., Zhang, S., Zhang, D. & Chen, S.-J. Vfold-Pipeline: a web server for RNA 3D structure prediction from sequences. Bioinformatics 38, 4042–4043 (2022).
Kretsch, R. C. et al. Functional relevance of CASP16 nucleic acid predictions as evaluated by structure providers. Proteins 94, 51–78 (2026).
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
Yan, Y., Tao, H., He, J. & Huang, S.-Y. The HDOCK server for integrated protein–protein docking. Nat. Protocols 15, 1829–1852 (2020).
Valero, J. et al. A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proc. Natl Acad. Sci. USA 118, e2112942118 (2021).
Sun, M. et al. Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew. Chem. Int. Ed. Engl. 60, 10266–10272 (2021).
Bartoschik, T. et al. Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale Thermophoresis. Sci. Rep. 8, 4977 (2018).
Song, Y. et al. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 92, 9895–9900 (2020).
Li, J. et al. Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Res. 49, 7267–7279 (2021).
Liu, X. et al. Neutralizing aptamers block S/RBD−ACE2 interactions and prevent host cell infection. Angew. Chem. Int. Ed. Engl. 60, 10273–10278 (2021).
Yang, G. et al. Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduct. Target Ther. 6, 227 (2021).
Alves Ferreira-Bravo, I. & DeStefano, J. J. Xeno-nucleic acid (XNA) 2′-fluoro-arabino nucleic acid (FANA) aptamers to the receptor-binding domain of SARS-CoV-2 S protein block ACE2 binding. Viruses 13, 1983 (2021).
Saify Nabiabad, H., Amini, M. & Demirdas, S. Specific delivering of RNAi using spike’s aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: a strong anti-Covid drug in a clinical case study. Chem. Biol. Drug Des. 99, 233–246 (2022).
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
Guo, C. et al. Transversions have larger regulatory effects than transitions. BMC Genomics 18, 394 (2017).
Sun, M. et al. Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape. J. Am. Chem. Soc. 143, 21541–21548 (2021).
Dang, C. V., Reddy, E. P., Shokat, K. M. & Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 17, 502–508 (2017).
Wang, Y. et al. Antitumor effect of anti-c-Myc aptamer-based PROTAC for degradation of the c-Myc protein. Adv. Sci. 11, 2309639 (2024).
He, J., Spokoyny, D., Neubig, G. & Berg-Kirkpatrick, T. Lagging inference networks and posterior collapse in variational autoencoders. In The Seventh International Conference on Learning Representations https://openreview.net/pdf/47f79f4015dbabc7f2eab6e432cddf975cf1c486.pdf (ICLR, 2019).
Dieng, A. B., Kim, Y., Rush, A. M. & Blei, D. M. Avoiding latent variable collapse with generative skip models. In Proc. Twenty-Second International Conference on Artificial Intelligence and Statistics (eds Kamalika, C. & Masashi, S.) 2397–2405 (PMLR, 2019).
Hawkins-Hooker, A. et al. Generating functional protein variants with variational autoencoders. PLoS Comput. Biol. 17, e1008736 (2021).
Zhang, C., Shine, M., Pyle, A. M. & Zhang, Y. US-align: universal structure alignments of proteins, nucleic acids, and macromolecular complexes. Nat. Methods 19, 1109–1115 (2022).
Madeira, F. et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52, W521–W525 (2024).
Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 13, 4348 (2022).
Ni, B., Kaplan, D. L. & Buehler, M. J. ForceGen: end-to-end de novo protein generation based on nonlinear mechanical unfolding responses using a language diffusion model. Sci. Adv. 10, eadl4000 (2024).
Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).
Zhang, Q. et al. Integrating protein language models and automatic biofoundry for enhanced protein evolution. Nat. Commun. 16, 1553 (2025).
Singh, A. Protein language models guide directed antibody evolution. Nat. Methods 20, 785 (2023).
Dalla-Torre, H. et al. Nucleotide Transformer: building and evaluating robust foundation models for human genomics. Nat. Methods 22, 287–297 (2025).
Vaswani, A. et al. Attention is all you need. In Proc. 31st International Conference on Neural Information Processing Systems 6000–6010 (Curran Associates, 2017).
Castro, E. et al. Transformer-based protein generation with regularized latent space optimization. Nat. Mach. Intell. 4, 840–851 (2022).
Ferruz, N. & Höcker, B. Controllable protein design with language models. Nat. Mach. Intell. 4, 521–532 (2022).
Nguyen Quang, N., Bouvier, C., Henriques, A., Lelandais, B. & Ducongé, F. Time-lapse imaging of molecular evolution by high-throughput sequencing. Nucleic Acids Res. 46, 7480–7494 (2018).
Chan, C. Y. et al. A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 10, S33 (2009).
Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).
Molejon, N. A. et al. Selection of G-rich ssDNA aptamers for the detection of enterotoxins of the cholera toxin family. Anal. Biochem. 669, 115118 (2023).
Melikishvili, M. et al. SELEX identifies high-affinity RNA targets for chromatin-binding proteins PARP1 and MeCP2. iScience 28, 113299 (2025).
Thiel, W. H. et al. Nucleotide bias observed with a short SELEX RNA aptamer library. Nucleic Acid Ther. 21, 253–263 (2011).
Zhang, J. et al. CRISmers NGS data used and generated by GRAPE-LM (1.0). Zenodo https://doi.org/10.5281/zenodo.18005327 (2025).
