Single step nanosecond laser structuring for cost effective functional titanium surfaces with topography driven preosteoblast adhesion

single-step-nanosecond-laser-structuring-for-cost-effective-functional-titanium-surfaces-with-topography-driven-preosteoblast-adhesion
Single step nanosecond laser structuring for cost effective functional titanium surfaces with topography driven preosteoblast adhesion

References

  1. Jemat, A., Ghazali, M. J., Razali, M. & Otsuka, Y. Surface modifications and their effects on titanium dental implants. Biomed. Res. Int. 2025, 791725. https://doi.org/10.1155/2015/791725 (2015).

  2. Mouhyi, J., Dohan Ehrenfest, D. M. & Albrektsson, T. The Peri-Implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin. Implant Dent. Relat. Res. 14 (2), 170–183. https://doi.org/10.1111/j.1708-8208.2009.00244.x (2012).

    Google Scholar 

  3. Rozé, J. et al. Correlating implant stability to bone structure. Clin. Oral Implants Res. 20 (10), 1140–1145. https://doi.org/10.1111/j.1600-0501.2009.01745.x (2009).

    Google Scholar 

  4. Palmquist, A., Omar, O. M., Esposito, M. & Lausmaa, Thomsen, J. Titanium oral implants: surface characteristics, interface biology and clinical outcome. J. R Soc. Interface. 7 (5), 515–527. https://doi.org/10.1098/rsif.2010.0118.focus (2010).

    Google Scholar 

  5. Zambuzzi, W. F. et al. Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations. PLoS One. 9, e95662. https://doi.org/10.1371/journal.pone.0095662 (2014).

    Google Scholar 

  6. Park, J. W., Han, S. H. & Hanawa, T. Effects of surface nanotopography and calcium chemistry of titanium bone implants on early blood platelet and macrophage cell function. Biomed. Res. Int. 1362958, 10. https://doi.org/10.1155/2018/1362958 (2018).

    Google Scholar 

  7. Coelho, P. G., Jimbo, R., Tovar, N. & Bonfante, E. A. Osseointegration hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent. Mater. 31, 37–52. https://doi.org/10.1016/j.dental.2014.10.007 (2015).

  8. Xu, R. et al. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. Int. J. Nanomed. 13, 5045–5057. https://doi.org/10.2147/IJN.S166661 (2018).

    Google Scholar 

  9. Yoo, D. et al. Increased osseointegration effect of bone morphogenetic protein 2 on dental implants: an in vivo study. J Biomed. Mater. Res. A. 102, 1921–1927. https://doi.org/10.1002/jbm.a.34862 (2014).

    Google Scholar 

  10. Lackington, W. A. et al. Femtosecond Laser-Texturing the surface of Ti-Based implants to improve their osseoitegration capacity. Adv. Mat. Interfac. 9 (31), 2201164. https://doi.org/10.1002/admi.202201164 (2022).

    Google Scholar 

  11. Ionescu, A. C. et al. Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation. PLoS One. 13 (9), e0202262. https://doi.org/10.1371/journal.pone.0202262 (2018).

    Google Scholar 

  12. Saran, R., Ginjupalli, K., George, S. D. & Chidangil, S. LASER as a tool for surface modification of dental biomaterials: a review. Heliyon 9 (6), e17457. https://doi.org/10.1016/j.heliyon.2023.e17457 (2023).

  13. Tsai, M. H. et al. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium. Mater. Charact. 106, 463–469. https://doi.org/10.1016/j.matchar.2015.06.004 (2015).

    Google Scholar 

  14. Lackington, W. A. et al. Femtosecond Laser-Texturing the surface of Ti-Based implants to improve their osseointegration capacity. Adv. Mater. Interf. 9 (31), 2201164. https://doi.org/10.1002/admi.202201164 (2022).

    Google Scholar 

  15. Liu, Y. et al. Characterization and evaluation of a femtosecond laser-induced osseointegration and an anti-inflammatory structure generated on a titanium alloy. Regen Biomater. 8 (2), rbab006. https://doi.org/10.1093/rb/rbab006 (2021).

    Google Scholar 

  16. Wang, Y., Yu, Z., Li, K. & Hu, J. Study on the effect of surface characteristics of short-pulse laser patterned titanium alloy on cell proliferation and osteogenic differentiation. Mater. Sci. Eng. C 128, 112349. https://doi.org/10.1016/j.msec.2021.112349 (2021).

    Google Scholar 

  17. Wang, Y., Zhang, M., Li, K. & Hu, J. Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy. Opt. Laser Technol. 139, 106987. https://doi.org/10.1016/j.optlastec.2021.106987 (2021).

    Google Scholar 

  18. Sypniewska, J. & Szkodo, M. Influence of laser modification on the surface character of biomaterials: titanium and its alloys. – Rev. Coat. 12 (10), 1371. https://doi.org/10.3390/coatings12101371 (2022).

    Google Scholar 

  19. https://www.graphpad.com/ (2023, assessed 15 May 2023).

  20. Kabekkodu, S. & PDF-4+ (Database). International Centre for Diffraction Data (Newtown Square, 2015).

  21. Crystallography Open Database (2021, accessed 5 Sep 2021). http://www.crystallography.net/cod/.

  22. Barylyak, A. et al. Photocatalytic and antibacterial activity properties of Ti surface treated by femtosecond laser – a prospective solution to peri-implant disease. Sci. Rep. 14, 20926. https://doi.org/10.1038/s41598-024-70103-4 (2024).

  23. Zwahr, C. et al. Ultrashort pulsed laser surface patterning of titanium to improve osseointegration of dental implants. Adv. Eng. Mater. 21, 1900639. https://doi.org/10.1002/adem.201900639 (2019).

  24. Ranella, A., Barberoglou, M., Bakogianni, S., Fotakis, C. & Stratakis, E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 6, 2711–2720. https://doi.org/10.1016/j.actbio.2010.01.016 (2010).

    Google Scholar 

  25. Singh, A. V. et al. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion. Nanotechnology 23 (47), 475101. https://doi.org/10.1088/0957-4484/23/47/475101 (2012).

    Google Scholar 

  26. Amani, H. et al. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv. Mater. Interfaces. 6, 1900572. https://doi.org/10.1002/admi.201900572 (2019).

    Google Scholar 

  27. Yang, W., Yu, H., Li, G., Wang, Y. & Liu, L. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres. Biomed. Microdevices. 18 (6), 107. https://doi.org/10.1007/s10544-016-0133-4 (2016).

  28. Shalabi, M. M., Gortemaker, A., Van’t Hof, M. A. & Jansen, J. A. Creugers, N.H.J. Implant surface roughness and bone healing: a systematic review. J. Dent. Res. 85 (6), 496–500. https://doi.org/10.1177/154405910608500603 (2006).

    Google Scholar 

  29. Chung, T. W., Liu, D. Z., Wang, S. Y. & Wang, S. S. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24 (25), 4655–4661. https://doi.org/10.1016/s0142-9612(03)00361-2 (2003).

    Google Scholar 

  30. Cai, S. et al. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 9 (1), 971–989. https://doi.org/10.1515/ntrev-2020-0076 (2020).

    Google Scholar 

  31. Sachot, N., Engel, E. & Castano, O. Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies. Curr. Org. Chem. 18, 2299–2314. https://doi.org/10.2174/1385272819666140806200355 (2014).

    Google Scholar 

  32. Deng, Y. et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite. Int. J. Nanomed. 10 (1), 1425–1447. https://doi.org/10.2147/IJN.S75557 (2015).

    Google Scholar 

  33. Hanawa, T. Biocompatibility of titanium from the viewpoint of its surface. Sci. Technol. Adv. Mater. 23 (1), 457–472. https://doi.org/10.1080/14686996.2022.2106156 (2022).

    Google Scholar 

  34. Ponsonnet, L. et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci. Eng. C. 23 (4), 551–560. https://doi.org/10.1016/S0928-4931(03)00033-X (2003).

    Google Scholar 

  35. Stepanovska, J., Matejka, R., Rosina, J., Bacakova, L. & Kolarova, H. Treatments for enhancing the biocompatibility of titanium implants. Biomed. Pap Med. Fac. Univ. Palacky Olomouc Czech Repub. 164 (1), 23–33. https://doi.org/10.5507/bp.2019.062 (2020).

    Google Scholar 

  36. Ferrari, M., Cirisano, F. & Moran, C. Mammalian cell behavior on hydrophobic substrates: influence of surface properties. Colloids Interfaces. 3 (2), 48. https://doi.org/10.3390/colloids3020048 (2019).

    Google Scholar 

  37. Oliveira, S. M., Alves, N. M. & Mano, J. F. Cell interactions with superhydrophilic and superhydrophobic surfaces. J. Adhes. Sci. Technol. 28 (8–9), 843–863. https://doi.org/10.1080/01694243.2012.697776 (2012).

    Google Scholar 

  38. Kang, S. M. & Choi, I. S. Control of cell adhesion on a superhydrophobic surface by polydopamine coating. Bull. Korean Chem. Soc. 34 (8), 2525–2527. https://doi.org/10.5012/bkcs.2013.34.8.2525 (2013).

    Google Scholar 

  39. Lee, J., Cuddihy, M. J. & Kotov, N. A. Three-dimensional cell culture matrices: state of the Art. Tissue Eng. Part. B Rev. 14 (1), 61–68. https://doi.org/10.1089/teb.2007.01 (2008).

    Google Scholar 

  40. Seidlits, S. K., Lee, J. Y. & Schmidt, C. E. Nanostructured scaffolds for neural applications. Nanomedicine 3 (2), 183–199. https://doi.org/10.2217/17435889.3.2.183 (2008).

    Google Scholar 

  41. Nekleionova, A. et al. Comparative study of cell interaction and bacterial adhesion on titanium of different composition, structure and surfaces with various laser treatment. Mater. Res. Express. 11, 055403. https://doi.org/10.1088/2053-1591/ad45be (2024).

    Google Scholar 

  42. Luo, J. et al. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix-A review. Bioactive Mater. 15, 145–159. https://doi.org/10.1016/j.bioactmat.2021.11.024 (2022).

    Google Scholar 

  43. Barberi, J. & Spriano, S. Titanium and protein adsorption: an overview of mechanisms and effects of surface features. Materials 14 (7), 1590. https://doi.org/10.3390/ma14071590 (2021).

    Google Scholar 

  44. Zhou, K. et al. Effect of surface energy on protein adsorptionbehaviours of treated CoCrMo alloy surfaces. Appl. Surf. Sci. 520, 146354. https://doi.org/10.1016/j.apsusc.2020.146354 (2020).

    Google Scholar 

Download references