References
-
Jemat, A., Ghazali, M. J., Razali, M. & Otsuka, Y. Surface modifications and their effects on titanium dental implants. Biomed. Res. Int. 2025, 791725. https://doi.org/10.1155/2015/791725 (2015).
-
Mouhyi, J., Dohan Ehrenfest, D. M. & Albrektsson, T. The Peri-Implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin. Implant Dent. Relat. Res. 14 (2), 170–183. https://doi.org/10.1111/j.1708-8208.2009.00244.x (2012).
-
Rozé, J. et al. Correlating implant stability to bone structure. Clin. Oral Implants Res. 20 (10), 1140–1145. https://doi.org/10.1111/j.1600-0501.2009.01745.x (2009).
-
Palmquist, A., Omar, O. M., Esposito, M. & Lausmaa, Thomsen, J. Titanium oral implants: surface characteristics, interface biology and clinical outcome. J. R Soc. Interface. 7 (5), 515–527. https://doi.org/10.1098/rsif.2010.0118.focus (2010).
-
Zambuzzi, W. F. et al. Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations. PLoS One. 9, e95662. https://doi.org/10.1371/journal.pone.0095662 (2014).
-
Park, J. W., Han, S. H. & Hanawa, T. Effects of surface nanotopography and calcium chemistry of titanium bone implants on early blood platelet and macrophage cell function. Biomed. Res. Int. 1362958, 10. https://doi.org/10.1155/2018/1362958 (2018).
-
Coelho, P. G., Jimbo, R., Tovar, N. & Bonfante, E. A. Osseointegration hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent. Mater. 31, 37–52. https://doi.org/10.1016/j.dental.2014.10.007 (2015).
-
Xu, R. et al. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. Int. J. Nanomed. 13, 5045–5057. https://doi.org/10.2147/IJN.S166661 (2018).
-
Yoo, D. et al. Increased osseointegration effect of bone morphogenetic protein 2 on dental implants: an in vivo study. J Biomed. Mater. Res. A. 102, 1921–1927. https://doi.org/10.1002/jbm.a.34862 (2014).
-
Lackington, W. A. et al. Femtosecond Laser-Texturing the surface of Ti-Based implants to improve their osseoitegration capacity. Adv. Mat. Interfac. 9 (31), 2201164. https://doi.org/10.1002/admi.202201164 (2022).
-
Ionescu, A. C. et al. Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation. PLoS One. 13 (9), e0202262. https://doi.org/10.1371/journal.pone.0202262 (2018).
-
Saran, R., Ginjupalli, K., George, S. D. & Chidangil, S. LASER as a tool for surface modification of dental biomaterials: a review. Heliyon 9 (6), e17457. https://doi.org/10.1016/j.heliyon.2023.e17457 (2023).
-
Tsai, M. H. et al. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium. Mater. Charact. 106, 463–469. https://doi.org/10.1016/j.matchar.2015.06.004 (2015).
-
Lackington, W. A. et al. Femtosecond Laser-Texturing the surface of Ti-Based implants to improve their osseointegration capacity. Adv. Mater. Interf. 9 (31), 2201164. https://doi.org/10.1002/admi.202201164 (2022).
-
Liu, Y. et al. Characterization and evaluation of a femtosecond laser-induced osseointegration and an anti-inflammatory structure generated on a titanium alloy. Regen Biomater. 8 (2), rbab006. https://doi.org/10.1093/rb/rbab006 (2021).
-
Wang, Y., Yu, Z., Li, K. & Hu, J. Study on the effect of surface characteristics of short-pulse laser patterned titanium alloy on cell proliferation and osteogenic differentiation. Mater. Sci. Eng. C 128, 112349. https://doi.org/10.1016/j.msec.2021.112349 (2021).
-
Wang, Y., Zhang, M., Li, K. & Hu, J. Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy. Opt. Laser Technol. 139, 106987. https://doi.org/10.1016/j.optlastec.2021.106987 (2021).
-
Sypniewska, J. & Szkodo, M. Influence of laser modification on the surface character of biomaterials: titanium and its alloys. – Rev. Coat. 12 (10), 1371. https://doi.org/10.3390/coatings12101371 (2022).
-
https://www.graphpad.com/ (2023, assessed 15 May 2023).
-
Kabekkodu, S. & PDF-4+ (Database). International Centre for Diffraction Data (Newtown Square, 2015).
-
Crystallography Open Database (2021, accessed 5 Sep 2021). http://www.crystallography.net/cod/.
-
Barylyak, A. et al. Photocatalytic and antibacterial activity properties of Ti surface treated by femtosecond laser – a prospective solution to peri-implant disease. Sci. Rep. 14, 20926. https://doi.org/10.1038/s41598-024-70103-4 (2024).
-
Zwahr, C. et al. Ultrashort pulsed laser surface patterning of titanium to improve osseointegration of dental implants. Adv. Eng. Mater. 21, 1900639. https://doi.org/10.1002/adem.201900639 (2019).
-
Ranella, A., Barberoglou, M., Bakogianni, S., Fotakis, C. & Stratakis, E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 6, 2711–2720. https://doi.org/10.1016/j.actbio.2010.01.016 (2010).
-
Singh, A. V. et al. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion. Nanotechnology 23 (47), 475101. https://doi.org/10.1088/0957-4484/23/47/475101 (2012).
-
Amani, H. et al. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv. Mater. Interfaces. 6, 1900572. https://doi.org/10.1002/admi.201900572 (2019).
-
Yang, W., Yu, H., Li, G., Wang, Y. & Liu, L. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres. Biomed. Microdevices. 18 (6), 107. https://doi.org/10.1007/s10544-016-0133-4 (2016).
-
Shalabi, M. M., Gortemaker, A., Van’t Hof, M. A. & Jansen, J. A. Creugers, N.H.J. Implant surface roughness and bone healing: a systematic review. J. Dent. Res. 85 (6), 496–500. https://doi.org/10.1177/154405910608500603 (2006).
-
Chung, T. W., Liu, D. Z., Wang, S. Y. & Wang, S. S. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24 (25), 4655–4661. https://doi.org/10.1016/s0142-9612(03)00361-2 (2003).
-
Cai, S. et al. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnol Rev. 9 (1), 971–989. https://doi.org/10.1515/ntrev-2020-0076 (2020).
-
Sachot, N., Engel, E. & Castano, O. Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies. Curr. Org. Chem. 18, 2299–2314. https://doi.org/10.2174/1385272819666140806200355 (2014).
-
Deng, Y. et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite. Int. J. Nanomed. 10 (1), 1425–1447. https://doi.org/10.2147/IJN.S75557 (2015).
-
Hanawa, T. Biocompatibility of titanium from the viewpoint of its surface. Sci. Technol. Adv. Mater. 23 (1), 457–472. https://doi.org/10.1080/14686996.2022.2106156 (2022).
-
Ponsonnet, L. et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci. Eng. C. 23 (4), 551–560. https://doi.org/10.1016/S0928-4931(03)00033-X (2003).
-
Stepanovska, J., Matejka, R., Rosina, J., Bacakova, L. & Kolarova, H. Treatments for enhancing the biocompatibility of titanium implants. Biomed. Pap Med. Fac. Univ. Palacky Olomouc Czech Repub. 164 (1), 23–33. https://doi.org/10.5507/bp.2019.062 (2020).
-
Ferrari, M., Cirisano, F. & Moran, C. Mammalian cell behavior on hydrophobic substrates: influence of surface properties. Colloids Interfaces. 3 (2), 48. https://doi.org/10.3390/colloids3020048 (2019).
-
Oliveira, S. M., Alves, N. M. & Mano, J. F. Cell interactions with superhydrophilic and superhydrophobic surfaces. J. Adhes. Sci. Technol. 28 (8–9), 843–863. https://doi.org/10.1080/01694243.2012.697776 (2012).
-
Kang, S. M. & Choi, I. S. Control of cell adhesion on a superhydrophobic surface by polydopamine coating. Bull. Korean Chem. Soc. 34 (8), 2525–2527. https://doi.org/10.5012/bkcs.2013.34.8.2525 (2013).
-
Lee, J., Cuddihy, M. J. & Kotov, N. A. Three-dimensional cell culture matrices: state of the Art. Tissue Eng. Part. B Rev. 14 (1), 61–68. https://doi.org/10.1089/teb.2007.01 (2008).
-
Seidlits, S. K., Lee, J. Y. & Schmidt, C. E. Nanostructured scaffolds for neural applications. Nanomedicine 3 (2), 183–199. https://doi.org/10.2217/17435889.3.2.183 (2008).
-
Nekleionova, A. et al. Comparative study of cell interaction and bacterial adhesion on titanium of different composition, structure and surfaces with various laser treatment. Mater. Res. Express. 11, 055403. https://doi.org/10.1088/2053-1591/ad45be (2024).
-
Luo, J. et al. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix-A review. Bioactive Mater. 15, 145–159. https://doi.org/10.1016/j.bioactmat.2021.11.024 (2022).
-
Barberi, J. & Spriano, S. Titanium and protein adsorption: an overview of mechanisms and effects of surface features. Materials 14 (7), 1590. https://doi.org/10.3390/ma14071590 (2021).
-
Zhou, K. et al. Effect of surface energy on protein adsorptionbehaviours of treated CoCrMo alloy surfaces. Appl. Surf. Sci. 520, 146354. https://doi.org/10.1016/j.apsusc.2020.146354 (2020).
