Spatial perturb-seq: single-cell functional genomics within intact tissue architecture

spatial-perturb-seq:-single-cell-functional-genomics-within-intact-tissue-architecture
Spatial perturb-seq: single-cell functional genomics within intact tissue architecture

Data availability

Raw and processed sequencing data have been deposited at NCBI’s Gene Expression Omnibus (GEO) with accession numbers GSE274447 (Stereo-seq) and GSE274058 (scRNA-seq). Source data are provided with this paper.

Code availability

Custom code is available at Github (https://github.com/kimberle9/spatialperturbseq) and archived on Zenodo54 (https://doi.org/10.5281/zenodo.17959756). The repository is released under the MIT License, an Open Source Initiative–approved license. There are no restrictions on access or reuse. Analysis of the processed data in this study was done using open-source R packages Seurat (https://github.com/satijalab/seurat), BANKSY, powsimR (https://github.com/bvieth/powsimR), scCustomize (https://github.com/samuel-marsh/scCustomize), and open-source Python packages Stereopy (https://stereopy.readthedocs.io/en/latest/) and SAW.

References

  1. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Google Scholar 

  2. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Google Scholar 

  3. Santinha, A. J. et al. Transcriptional linkage analysis with in vivo AAV-Perturb-seq. Nature 622, 367–375 (2023).

    Google Scholar 

  4. Zheng, X. et al. Massively parallel in vivo perturb-seq reveals cell-type-specific transcriptional networks in cortical development. Cell https://doi.org/10.1016/j.cell.2024.04.050 (2024).

  5. Jin, X. et al. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science (New York, N.Y.) 370, eaaz6063 (2020).

  6. Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    Google Scholar 

  7. Gu, J. et al. Mapping multimodal phenotypes to perturbations in cells and tissue with CRISPRmap. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02386-x (2024).

  8. Kudo T. et al. Multiplexed, image-based pooled screens in primary cells and tissues with PerturbView. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02391-0 (2024)

  9. Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799.e17 (2019).

    Google Scholar 

  10. Wang, C., Lu, T., Emanuel, G., Babcock, H. P. & Zhuang, X. Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization. Proc. Natl. Acad. Sci. USA 116, 10842–10851 (2019).

    Google Scholar 

  11. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Google Scholar 

  12. Marco Salas, S. et al. Optimizing xenium in situ data utility by quality assessment and best-practice analysis workflows. Nat. Methods 22, 813–823 (2025).

    Google Scholar 

  13. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Google Scholar 

  14. Montini, E. et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J. Clin. Invest. 119, 964–975 (2009).

    Google Scholar 

  15. Hill, A. J. et al. On the design of CRISPR-based single-cell molecular screens. Nat. Methods 15, 271–274 (2018).

    Google Scholar 

  16. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Google Scholar 

  17. Pandey, S. et al. Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 40, 111189 (2022).

    Google Scholar 

  18. Floriddia, E. M. et al. Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat. Commun. 11, 5860 (2020).

    Google Scholar 

  19. Wang, J. et al. Olig2 ablation in immature oligodendrocytes does not enhance CNS myelination and remyelination. J. Neurosci. 42, 8542–8555 (2022).

    Google Scholar 

  20. Meireles, A. M. et al. The lysosomal transcription factor TFEB represses myelination downstream of the rag-ragulator complex. Dev. Cell 47, 319–330.e5 (2018).

    Google Scholar 

  21. Jiang, L. et al. Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens. Nat. Cell Biol. 27, 505–517 (2025).

    Google Scholar 

  22. Hu, P. et al. Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-seq. Mol. cell 68, 1006–1015.e7 (2017).

    Google Scholar 

  23. Bannon, D. et al. DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes. Nat. Methods 18, 43–45 (2021).

    Google Scholar 

  24. Singhal, V. et al. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nat. Genet. 56, 431–441 (2024).

    Google Scholar 

  25. Yang, S. et al. Pathogenicity and functional analysis of CFAP410 mutations causing cone-rod dystrophy with macular staphyloma. Front. Med. 10, 1216427 (2023).

    Google Scholar 

  26. Tolosa, E., Vila, M., Klein, C. & Rascol, O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat. Rev. Neurol. 16, 97–107 (2020).

    Google Scholar 

  27. Usmani, A., Shavarebi, F. & Hiniker, A. The cell biology of LRRK2 in Parkinson’s disease. Mol. Cell. Biol. 41, e00660-20 (2021).

    Google Scholar 

  28. Briz, V. et al. The non-coding RNA BC1 regulates experience-dependent structural plasticity and learning. Nat. Commun. 8, 293 (2017).

    Google Scholar 

  29. Bu, M. et al. Inhibition of LRRK2 kinase activity rescues deficits in striatal dopamine physiology in VPS35 p.D620N knock-in mice. NPJ Parkinson’s. Dis. 9, 167 (2023).

    Google Scholar 

  30. Jaudon, F. et al. The RhoGEF DOCK10 is essential for dendritic spine morphogenesis. Mol. Biol. Cell 26, 2112–2127 (2015).

    Google Scholar 

  31. Morató, X. et al. The Parkinson’s disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo. Sci. Rep. 7, 9452 (2017).

    Google Scholar 

  32. Kuzniewska, B. et al. SRF is required for sprouting and maintenance of neuronal connections in the hippocampus. J. Neurosci. 36, 5699–5710 (2016).

    Google Scholar 

  33. Ma’ayan Lab. (n.d.). SRF gene set—ENCODE Transcription Factor Targets. Harmonizome. Retrieved 2024 from https://maayanlab.cloud/Harmonizome/gene_set/SRF/ENCODE+Transcription+Factor+Targets

  34. Ba, W. et al. ARHGAP12 functions as a developmental brake on excitatory synapse function. Cell Rep. 14, 1355–1368 (2016).

    Google Scholar 

  35. Zeng, S. X., Dai, M. S., Keller, D. M. & Lu, H. SSRP1 functions as a co-activator of the transcriptional activator p63. EMBO J. 21, 5487–5497 (2002).

    Google Scholar 

  36. Mitchell, A. C., Jiang, Y., Peter, C. & Akbarian, S. Transcriptional regulation of GAD1 GABA synthesis gene in the prefrontal cortex of subjects with schizophrenia. Schizophrenia Res. 167, 28–34 (2015).

    Google Scholar 

  37. Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data. Nat. Commun. 13, 3224 (2022).

    Google Scholar 

  38. Chen, K. et al. LRP1 is a neuronal receptor for α-synuclein uptake and spread. Mol. neurodegeneration 17, 57 (2022).

    Google Scholar 

  39. Ludtmann, M. H. R. et al. LRRK2 deficiency induced mitochondrial Ca2+ efflux inhibition can be rescued by Na+/Ca2+/Li+ exchanger upregulation. Cell Death Dis. 10, 265 (2019).

    Google Scholar 

  40. Binan, L. et al. Simultaneous CRISPR screening and spatial transcriptomics reveal intracellular, intercellular, and functional transcriptional circuits. Cell 188, 2141–2158.e18 (2025).

    Google Scholar 

  41. Wroblewska, A. et al. Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell 175, 1141–1155.e16 (2018).

    Google Scholar 

  42. Baysoy, A. et al. Spatially resolved in vivo CRISPR screen sequencing via perturb-DBiT. bioRxiv https://doi.org/10.1101/2024.11.18.624106 (2024).

  43. Saunders, R. A. et al. Perturb-Multimodal: A platform for pooled genetic screens with imaging and sequencing in intact mammalian tissue. Cell 188, 4790–4809.e22 (2025).

    Google Scholar 

  44. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science (New York, N.Y.), 348, aaa6090 (2015).

  45. He, S. et al. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806 (2022).

    Google Scholar 

  46. Bramlett, C. et al. Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat. Protoc. 15, 1436–1458 (2020).

    Google Scholar 

  47. Kong, W. et al. CellTagging: combinatorial indexing to simultaneously map lineage and identity at single-cell resolution. Nat. Protoc. 15, 750–772 (2020).

    Google Scholar 

  48. Jindal, K. et al. Single-cell lineage capture across genomic modalities with CellTag-multi reveals fate-specific gene regulatory changes. Nat. Biotechnol. 42, 946–959 (2024).

    Google Scholar 

  49. Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsimR: power analysis for bulk and single cell RNA-seq experiments. Bioinformatics 33, 3486–3488 (2017).

    Google Scholar 

  50. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).

    Google Scholar 

  51. Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Google Scholar 

  52. Goh, J. J. L. et al. Highly specific multiplexed RNA imaging in tissues with split-FISH. Nat. Methods 17, 689–693 (2020).

    Google Scholar 

  53. Keng, C. T. et al. Multiplex viral tropism assay in complex cell populations with single-cell resolution. Gene Ther. 29, 555–565 (2022).

    Google Scholar 

  54. Shen. K. spatialperturbseq (Version 1.0.0) [Computer Software]. Zenodo https://doi.org/10.5281/zenodo.17959756 (2025).

Download references

Acknowledgements

The authors thank Nikita Gupta, Vipul Singhal, Nigel Chou, Grace Yeo, Timothy Stuart, Adaikalavan Ramasamy and Chia Minghao for assistance and insights on bioinformatics analysis; Torsten Wustefeld for provision of Cas9 mice; Fu Yu and Christine Chiam for use of stereotaxic apparatus; Bing Shao Chia and Joshua James for assistance with library cloning; Maurice Lee and Norbert Ha for assistance with initial FISH experiments; Liew Jun Xian for cloud platform setup; Caleigh Tan for reviewing the manuscript; A*STAR’s Immunology Network (SIgN) Flow Cytometry platform for help with FACS experiments. A*STAR’s SIgN Flow Cytometry platform is supported by SIgN, A*STAR, and the National Research Foundation (NRF), Immunomonitoring Service Platform (Ref: ISP: NRF2017_SISFP09) grant. This work is supported by A*STAR Core Funding, A*STAR Central Research Fund UIBR SC18/21-1089UI, National Medical Research Council (NMRC) Open Fund—Individual Research Grant (OF-IRG) OFIRG24jul-0096, and Open Fund—Young Individual Research Grant (OF-YIRG) OFYIRG23jul-0050. This project is supported by the Singapore Ministry of Health’s National Medical Research Council through the Programme for Research in Epidemic Preparedness and Response (PREPARE), under its PREPARE Vaccines & Therapeutics Co-op Open Grant (PREPARE-OC-VT-2024-008). K.H.C. is supported by the National Medical Research Council of Singapore grant OFIRG20nov-0056 and the National Research Foundation grant NRF-CRP25-2020-0001.

Author information

Authors and Affiliations

  1. Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, Republic of Singapore

    Kimberle Shen, Wan Yi Seow, Choong Tat Keng, Michelle Gek Liang Lim, Daryl Shern Lim, Ke Guo, Amine Meliani, Muhammad Irfan Bin Hajis, Bolun Wang, Shyam Prabhakar, Kok Hao Chen & Wei Leong Chew

  2. Population and Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore

    Shyam Prabhakar

  3. Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore

    Shyam Prabhakar

  4. Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore

    Wei Leong Chew

Authors

  1. Kimberle Shen
  2. Wan Yi Seow
  3. Choong Tat Keng
  4. Michelle Gek Liang Lim
  5. Daryl Shern Lim
  6. Ke Guo
  7. Amine Meliani
  8. Muhammad Irfan Bin Hajis
  9. Bolun Wang
  10. Shyam Prabhakar
  11. Kok Hao Chen
  12. Wei Leong Chew

Contributions

K.S., C.T.K. and W.L.C. conceived and conceptualized the technology framework. K.S., C.T.K., W.Y.S., K.H.C. and W.L.C. designed the experiments. K.S. did stereotaxic injections, tissue collection and processing. W.Y.S. performed the FISH experiments. M.G.L.L. processed slides for Xenium. S.P. provided intellectual contributions to Xenium experiments. D.L.S, C.T.K. and K.S. performed library cloning. D.L.S. and A.M. produced the AAVs. B.W. and C.T.K. prepared libraries for long-read sequencing of the 3xU6-sgRNA cassettes. M.I.B.H. and K.S. wrote the script for the generation of the barcodes. K.G. bred and maintained Cas9 mice. K.S. performed bioinformatics analysis. K.S., W.Y.S. and W.L.C. wrote the manuscript with contributions from the rest of the authors.

Corresponding author

Correspondence to Wei Leong Chew.

Ethics declarations

Competing interests

The authors (K.S., C.T.K., M.I.B.H., W.L.C., W.Y.S.) are listed as inventors on a patent application related to all of this work (Patent Cooperation Treaty Patent Application No. PCT/SG2025/050446). Applicant: A*STAR. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Qi Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Seow, W.Y., Keng, C.T. et al. Spatial perturb-seq: single-cell functional genomics within intact tissue architecture. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-026-69677-6