Spatiotemporal dynamics and regulation of suture morphology and collagen remodeling during trans-sutural distraction osteogenesis

spatiotemporal-dynamics-and-regulation-of-suture-morphology-and-collagen-remodeling-during-trans-sutural-distraction-osteogenesis
Spatiotemporal dynamics and regulation of suture morphology and collagen remodeling during trans-sutural distraction osteogenesis

References

  1. Forte, A. J. et al. Analysis of airway and midface in crouzon syndromes. Ann. Plast Surg. 82, 686–691 (2019).

    Google Scholar 

  2. Azoulay-Avinoam, S. et al. An overview of craniosynostosis craniofacial syndromes for combined orthodontic and surgical management. Oral Maxillofac Surg. Clin. North Am. 32, 233–247 (2020).

    Google Scholar 

  3. Liu, C.-M. et al. Trans-sutural distraction osteogenesis for early correction of midfacial hypoplasia in children: a primary clinical report]. Zhonghua Zheng Xing Wai Ke Za Zhi 21, 90–93 (2005).

    Google Scholar 

  4. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).

    Google Scholar 

  5. Behr, B., Longaker, M. T. & Quarto, N. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev. Biol. 344, 922–940 (2010).

    Google Scholar 

  6. Park, S., Zhao, H., Urata, M. & Chai, Y. Sutures possess strong regenerative capacity for calvarial bone injury. Stem Cells Dev 25, 1801–1807 (2016).

    Google Scholar 

  7. Grcevic, D. et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 30, 187–196 (2012).

    Google Scholar 

  8. Li, G., Liang, W., Ding, P. & Zhao, Z. Sutural fibroblasts exhibit the function of vascular endothelial cells upon mechanical strain. Arch Biochem. Biophys. 712, 109046 (2021).

    Google Scholar 

  9. Guerrero Vargas, J. A., Carvalho Trojan, L., de Las Casas, E. B. & Garzón Alvarado, D. A. Finite element analysis of the influence of interdigitation pattern and collagen fibers on the mechanical behavior of the midpalatal suture. Med. Biol. Eng. Comput. 61, 2367–2377 (2023)

  10. Shiflett, L. A. et al. Collagen dynamics during the process of osteocyte embedding and mineralization. Front Cell Dev. Biol. 7, 178 (2019).

    Google Scholar 

  11. Carinci, P., Becchetti, E. & Bodo, M. Role of the extracellular matrix and growth factors in skull morphogenesis and in the pathogenesis of craniosynostosis. Int. J. Dev. Biol. 44, 715–723 (2000).

    Google Scholar 

  12. Carinci, P. et al. Extracellular matrix and growth factors in the pathogenesis of some craniofacial malformations. Eur. J. Histochem. 51, 105–115 (2007).

    Google Scholar 

  13. Stamper, B. D. et al. Differential expression of extracellular matrix-mediated pathways in single-suture craniosynostosis. PLoS ONE 6, e26557 (2011).

    Google Scholar 

  14. Campos, L. D., Santos Junior, V. A., Pimentel, J. D., Carregã, G. L. F. & Cazarin, C. B. B. Collagen supplementation in skin and orthopedic diseases: a review of the literature. Heliyon 9, e14961 (2023).

    Google Scholar 

  15. Liang, W., Zhao, E., Li, G., Bi, H. & Zhao, Z. Suture cells in a mechanical stretching niche: critical contributors to trans-sutural distraction osteogenesis. Calcif. Tissue Int. 110, 285–293 (2022).

    Google Scholar 

  16. Liang, W. et al. Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment. Cell Tissue Res. 386, 585–603 (2021).

    Google Scholar 

  17. Abhilash, A. S., Baker, B. M., Trappmann, B., Chen, C. S. & Shenoy, V. B. Remodeling of fibrous extracellular matrices by contractile cells: predictions from discrete fiber network simulations. Biophys. J.107, 1829–1840 (2014).

    Google Scholar 

  18. Hall, M. S. et al. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl Acad. Sci. USA 113, 14043–14048 (2016).

    Google Scholar 

  19. Topol, H., Demirkoparan, H. & Pence, T. J. On collagen fiber morphoelasticity and homeostatic remodeling tone. J.e Mech. Behav. Biomed. Mater. 113, 104154 (2021).

    Google Scholar 

  20. Malandrino, A., Trepat, X., Kamm, R. D. & Mak, M. Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices. PLOS Comput. Biol. 15, e1006684 (2019).

    Google Scholar 

  21. Zeng, D. et al. Three-dimensional modeling of mechanical forces in the extracellular matrix during epithelial lumen formation. Biophys. J. 90, 4380–4391 (2006).

    Google Scholar 

  22. Subramanian, A., Kanzaki, L. F., Galloway, J. L. & Schilling, T. F. Mechanical force regulates tendon extracellular matrix organization and tenocyte morphogenesis through TGFbeta signaling. eLife 7, e38069 (2018).

    Google Scholar 

  23. Dudenkova, V. V. et al. Examination of collagen structure and state by the second harmonic generation microscopy. Biochemistry (Mosc) 84, S89–S107 (2019).

    Google Scholar 

  24. Pendleton, E. G., Tehrani, K. F., Barrow, R. P. & Mortensen, L. J. Second harmonic generation characterization of collagen in whole bone. Biomed. Opt. Express 11, 4379–4396 (2020).

    Google Scholar 

  25. Birk, D. E., Southern, J. F., Zycband, E. I., Fallon, J. T. & Trelstad, R. L. Collagen fibril bundles: a branching assembly unit in tendon morphogenesis. Development 107, 437–443 (1989).

    Google Scholar 

  26. Kalson, N. S. et al. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth. Elife 4, e05958 (2015).

    Google Scholar 

  27. Birk, D. E. & Trelstad, R. L. Extracellular compartments in matrix morphogenesis: Collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J. Cell Biol. 99, 2024–2033 (1984).

    Google Scholar 

  28. Saini, K., Cho, S., Dooling, L. J. & Discher, D. E. Tension in fibrils suppresses their enzymatic degradation – a molecular mechanism for ‘use it or lose it’. Matrix Biol. 85–86, 34–46 (2020).

    Google Scholar 

  29. Siadat, S. M. & Ruberti, J. W. Mechanochemistry of collagen. Acta Biomater. 163, 50–62 (2023).

    Google Scholar 

  30. Kawasaki, K., Suzuki, T. & Weiss, K. M. Genetic basis for the evolution of vertebrate mineralized tissue. Proc. Natl. Acad. Sci. USA 101, 11356–11361 (2004).

    Google Scholar 

  31. Landis, W. J. & Silver, F. H. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs 189, 20–24 (2009).

    Google Scholar 

  32. Tang, V. W. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol. Biol. Cell 31, 1823–1834 (2020).

    Google Scholar 

  33. van der Rijt, J. A. J., van der Werf, K. O., Bennink, M. L., Dijkstra, P. J. & Feijen, J. Micromechanical testing of individual collagen fibrils. Macromol. Biosci. 6, 697–702 (2006).

    Google Scholar 

  34. Discher, D. et al. Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37, 847–859 (2009).

    Google Scholar 

  35. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Google Scholar 

  36. Holmbeck, K. & Szabova, L. Aspects of extracellular matrix remodeling in development and disease. Birth Defects Res. C Embryo Today 78, 11–23 (2006).

    Google Scholar 

  37. Carey, S. P., Martin, K. E. & Reinhart-King, C. A. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci. Rep. 7, 42088 (2017).

    Google Scholar 

  38. Livne, A. & Geiger, B. The inner workings of stress fibers - from contractile machinery to focal adhesions and back. J. Cell Sci. 129, 1293–1304 (2016).

    Google Scholar 

  39. Niland, S. et al. Biofunctionalization of a generic collagenous triple helix with the α2β1 integrin binding site allows molecular force measurements. Int. J. Biochem. Cell Biol. 43, 721–731 (2011).

    Google Scholar 

  40. Marelli, B. et al. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling. Biomaterials 54, 126–135 (2015).

    Google Scholar 

  41. Izu, Y. et al. Collagen XII mediated cellular and extracellular mechanisms regulate establishment of tendon structure and function. Matrix Biol. 95, 52–67 (2021).

    Google Scholar 

  42. Chan, A., Ma, S., Pearson, B. J. & Chan, D. Collagen IV differentially regulates planarian stem cell potency and lineage progression. Proc. Natl. Acad. Sci. USA 118, e2021251118 (2021).

    Google Scholar 

  43. Klinkhammer, B. M., Floege, J. & Boor, P. PDGF in organ fibrosis. Mol. Aspects Med. 62, 44–62 (2018).

    Google Scholar 

  44. Zou, X. et al. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int. J. Biol. Macromol. 202, 539–557 (2022).

    Google Scholar 

  45. Sandberg, M. M. Matrix in cartilage and bone development: current views on the function and regulation of major organic components. Ann. Med. 23, 207–217 (1991).

    Google Scholar 

  46. Chen, Y. et al. A promising candidate in tendon healing events-PDGF-BB. Biomolecules 12, 1518 (2022).

    Google Scholar 

  47. Zhang, W. et al. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J. Orthop. Translat. 33, 41–54 (2022).

    Google Scholar 

  48. Xie, H. et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270–1278 (2014).

    Google Scholar 

  49. Chowdary, A. R. et al. Macrophage-mediated PDGF activation correlates with regenerative outcomes following musculoskeletal trauma. Ann. Surg 278, e349–e359 (2023).

    Google Scholar 

  50. Su, W. et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 5, e135446 (2020).

    Google Scholar 

  51. Nazari, M. et al. Mast cells promote proliferation and migration and inhibit differentiation of mesenchymal stem cells through PDGF. J. Mol. Cell Cardiol 94, 32–42 (2016).

    Google Scholar 

  52. Cao, H. et al. PDGF-BB prevents destructive repair and promotes reparative osteogenesis of steroid-associated osteonecrosis of the femoral head in rabbits. Bone 167, 116645 (2023).

    Google Scholar 

  53. Zhang, N. et al. PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem Cell Res. Ther. 12, 40 (2021).

    Google Scholar 

  54. Sasaki, A., Sugiyama, H., Tanaka, E. & Sugiyama, M. Effects of sutural distraction osteogenesis applied to rat maxillary complex on craniofacial growth. J. Oral Maxillofac. Surg 60, 667–675 (2002).

    Google Scholar 

  55. Jin, M. et al. Distraction force promotes the osteogenic differentiation of Gli1+ cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway. Stem Cell Res. Ther. 15, 198 (2024).

    Google Scholar 

  56. Takeshita, N. et al. In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J. Bone Miner Metab. 35, 40–51 (2017).

    Google Scholar 

  57. Morinobu, M. et al. Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J. Bone Miner Res. 18, 1706–1715 (2003).

    Google Scholar 

  58. Tian, Z. et al. Identification of important modules and biomarkers in breast cancer based on WGCNA. Onco. Targets Ther. 13, 6805–6817 (2020).

    Google Scholar 

  59. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Google Scholar 

  60. Hu, C. et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51, D870–D876 (2023).

    Google Scholar 

  61. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Google Scholar 

  62. Boudaoud, A. et al. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat. Protoc. 9, 457–463 (2014).

    Google Scholar 

  63. Morrill, E. E. et al. A validated software application to measure fiber organization in soft tissue. Biomech. Model Mechanobiol. 15, 1467–1478 (2016).

    Google Scholar 

  64. Stevens, M. et al. StarDist image segmentation improves circulating tumor cell detection. Cancers (Basel) 14, 2916 (2022).

    Google Scholar 

  65. Chan, I. Z. W., Stevens, M. & Todd, P. A. pat-geom: A software package for the analysis of animal patterns. Methods Ecol. Evol. 10, 591–600 (2019).

    Google Scholar 

Download references