References
-
Forte, A. J. et al. Analysis of airway and midface in crouzon syndromes. Ann. Plast Surg. 82, 686–691 (2019).
-
Azoulay-Avinoam, S. et al. An overview of craniosynostosis craniofacial syndromes for combined orthodontic and surgical management. Oral Maxillofac Surg. Clin. North Am. 32, 233–247 (2020).
-
Liu, C.-M. et al. Trans-sutural distraction osteogenesis for early correction of midfacial hypoplasia in children: a primary clinical report]. Zhonghua Zheng Xing Wai Ke Za Zhi 21, 90–93 (2005).
-
Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).
-
Behr, B., Longaker, M. T. & Quarto, N. Differential activation of canonical Wnt signaling determines cranial sutures fate: a novel mechanism for sagittal suture craniosynostosis. Dev. Biol. 344, 922–940 (2010).
-
Park, S., Zhao, H., Urata, M. & Chai, Y. Sutures possess strong regenerative capacity for calvarial bone injury. Stem Cells Dev 25, 1801–1807 (2016).
-
Grcevic, D. et al. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 30, 187–196 (2012).
-
Li, G., Liang, W., Ding, P. & Zhao, Z. Sutural fibroblasts exhibit the function of vascular endothelial cells upon mechanical strain. Arch Biochem. Biophys. 712, 109046 (2021).
-
Guerrero Vargas, J. A., Carvalho Trojan, L., de Las Casas, E. B. & Garzón Alvarado, D. A. Finite element analysis of the influence of interdigitation pattern and collagen fibers on the mechanical behavior of the midpalatal suture. Med. Biol. Eng. Comput. 61, 2367–2377 (2023)
-
Shiflett, L. A. et al. Collagen dynamics during the process of osteocyte embedding and mineralization. Front Cell Dev. Biol. 7, 178 (2019).
-
Carinci, P., Becchetti, E. & Bodo, M. Role of the extracellular matrix and growth factors in skull morphogenesis and in the pathogenesis of craniosynostosis. Int. J. Dev. Biol. 44, 715–723 (2000).
-
Carinci, P. et al. Extracellular matrix and growth factors in the pathogenesis of some craniofacial malformations. Eur. J. Histochem. 51, 105–115 (2007).
-
Stamper, B. D. et al. Differential expression of extracellular matrix-mediated pathways in single-suture craniosynostosis. PLoS ONE 6, e26557 (2011).
-
Campos, L. D., Santos Junior, V. A., Pimentel, J. D., Carregã, G. L. F. & Cazarin, C. B. B. Collagen supplementation in skin and orthopedic diseases: a review of the literature. Heliyon 9, e14961 (2023).
-
Liang, W., Zhao, E., Li, G., Bi, H. & Zhao, Z. Suture cells in a mechanical stretching niche: critical contributors to trans-sutural distraction osteogenesis. Calcif. Tissue Int. 110, 285–293 (2022).
-
Liang, W. et al. Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment. Cell Tissue Res. 386, 585–603 (2021).
-
Abhilash, A. S., Baker, B. M., Trappmann, B., Chen, C. S. & Shenoy, V. B. Remodeling of fibrous extracellular matrices by contractile cells: predictions from discrete fiber network simulations. Biophys. J.107, 1829–1840 (2014).
-
Hall, M. S. et al. Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc. Natl Acad. Sci. USA 113, 14043–14048 (2016).
-
Topol, H., Demirkoparan, H. & Pence, T. J. On collagen fiber morphoelasticity and homeostatic remodeling tone. J.e Mech. Behav. Biomed. Mater. 113, 104154 (2021).
-
Malandrino, A., Trepat, X., Kamm, R. D. & Mak, M. Dynamic filopodial forces induce accumulation, damage, and plastic remodeling of 3D extracellular matrices. PLOS Comput. Biol. 15, e1006684 (2019).
-
Zeng, D. et al. Three-dimensional modeling of mechanical forces in the extracellular matrix during epithelial lumen formation. Biophys. J. 90, 4380–4391 (2006).
-
Subramanian, A., Kanzaki, L. F., Galloway, J. L. & Schilling, T. F. Mechanical force regulates tendon extracellular matrix organization and tenocyte morphogenesis through TGFbeta signaling. eLife 7, e38069 (2018).
-
Dudenkova, V. V. et al. Examination of collagen structure and state by the second harmonic generation microscopy. Biochemistry (Mosc) 84, S89–S107 (2019).
-
Pendleton, E. G., Tehrani, K. F., Barrow, R. P. & Mortensen, L. J. Second harmonic generation characterization of collagen in whole bone. Biomed. Opt. Express 11, 4379–4396 (2020).
-
Birk, D. E., Southern, J. F., Zycband, E. I., Fallon, J. T. & Trelstad, R. L. Collagen fibril bundles: a branching assembly unit in tendon morphogenesis. Development 107, 437–443 (1989).
-
Kalson, N. S. et al. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth. Elife 4, e05958 (2015).
-
Birk, D. E. & Trelstad, R. L. Extracellular compartments in matrix morphogenesis: Collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J. Cell Biol. 99, 2024–2033 (1984).
-
Saini, K., Cho, S., Dooling, L. J. & Discher, D. E. Tension in fibrils suppresses their enzymatic degradation – a molecular mechanism for ‘use it or lose it’. Matrix Biol. 85–86, 34–46 (2020).
-
Siadat, S. M. & Ruberti, J. W. Mechanochemistry of collagen. Acta Biomater. 163, 50–62 (2023).
-
Kawasaki, K., Suzuki, T. & Weiss, K. M. Genetic basis for the evolution of vertebrate mineralized tissue. Proc. Natl. Acad. Sci. USA 101, 11356–11361 (2004).
-
Landis, W. J. & Silver, F. H. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs 189, 20–24 (2009).
-
Tang, V. W. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol. Biol. Cell 31, 1823–1834 (2020).
-
van der Rijt, J. A. J., van der Werf, K. O., Bennink, M. L., Dijkstra, P. J. & Feijen, J. Micromechanical testing of individual collagen fibrils. Macromol. Biosci. 6, 697–702 (2006).
-
Discher, D. et al. Biomechanics: cell research and applications for the next decade. Ann. Biomed. Eng. 37, 847–859 (2009).
-
Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).
-
Holmbeck, K. & Szabova, L. Aspects of extracellular matrix remodeling in development and disease. Birth Defects Res. C Embryo Today 78, 11–23 (2006).
-
Carey, S. P., Martin, K. E. & Reinhart-King, C. A. Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci. Rep. 7, 42088 (2017).
-
Livne, A. & Geiger, B. The inner workings of stress fibers - from contractile machinery to focal adhesions and back. J. Cell Sci. 129, 1293–1304 (2016).
-
Niland, S. et al. Biofunctionalization of a generic collagenous triple helix with the α2β1 integrin binding site allows molecular force measurements. Int. J. Biochem. Cell Biol. 43, 721–731 (2011).
-
Marelli, B. et al. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling. Biomaterials 54, 126–135 (2015).
-
Izu, Y. et al. Collagen XII mediated cellular and extracellular mechanisms regulate establishment of tendon structure and function. Matrix Biol. 95, 52–67 (2021).
-
Chan, A., Ma, S., Pearson, B. J. & Chan, D. Collagen IV differentially regulates planarian stem cell potency and lineage progression. Proc. Natl. Acad. Sci. USA 118, e2021251118 (2021).
-
Klinkhammer, B. M., Floege, J. & Boor, P. PDGF in organ fibrosis. Mol. Aspects Med. 62, 44–62 (2018).
-
Zou, X. et al. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int. J. Biol. Macromol. 202, 539–557 (2022).
-
Sandberg, M. M. Matrix in cartilage and bone development: current views on the function and regulation of major organic components. Ann. Med. 23, 207–217 (1991).
-
Chen, Y. et al. A promising candidate in tendon healing events-PDGF-BB. Biomolecules 12, 1518 (2022).
-
Zhang, W. et al. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J. Orthop. Translat. 33, 41–54 (2022).
-
Xie, H. et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat. Med. 20, 1270–1278 (2014).
-
Chowdary, A. R. et al. Macrophage-mediated PDGF activation correlates with regenerative outcomes following musculoskeletal trauma. Ann. Surg 278, e349–e359 (2023).
-
Su, W. et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development. JCI Insight 5, e135446 (2020).
-
Nazari, M. et al. Mast cells promote proliferation and migration and inhibit differentiation of mesenchymal stem cells through PDGF. J. Mol. Cell Cardiol 94, 32–42 (2016).
-
Cao, H. et al. PDGF-BB prevents destructive repair and promotes reparative osteogenesis of steroid-associated osteonecrosis of the femoral head in rabbits. Bone 167, 116645 (2023).
-
Zhang, N. et al. PDGF-BB and IL-4 co-overexpression is a potential strategy to enhance mesenchymal stem cell-based bone regeneration. Stem Cell Res. Ther. 12, 40 (2021).
-
Sasaki, A., Sugiyama, H., Tanaka, E. & Sugiyama, M. Effects of sutural distraction osteogenesis applied to rat maxillary complex on craniofacial growth. J. Oral Maxillofac. Surg 60, 667–675 (2002).
-
Jin, M. et al. Distraction force promotes the osteogenic differentiation of Gli1+ cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway. Stem Cell Res. Ther. 15, 198 (2024).
-
Takeshita, N. et al. In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J. Bone Miner Metab. 35, 40–51 (2017).
-
Morinobu, M. et al. Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J. Bone Miner Res. 18, 1706–1715 (2003).
-
Tian, Z. et al. Identification of important modules and biomarkers in breast cancer based on WGCNA. Onco. Targets Ther. 13, 6805–6817 (2020).
-
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).
-
Hu, C. et al. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51, D870–D876 (2023).
-
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).
-
Boudaoud, A. et al. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat. Protoc. 9, 457–463 (2014).
-
Morrill, E. E. et al. A validated software application to measure fiber organization in soft tissue. Biomech. Model Mechanobiol. 15, 1467–1478 (2016).
-
Stevens, M. et al. StarDist image segmentation improves circulating tumor cell detection. Cancers (Basel) 14, 2916 (2022).
-
Chan, I. Z. W., Stevens, M. & Todd, P. A. pat-geom: A software package for the analysis of animal patterns. Methods Ecol. Evol. 10, 591–600 (2019).
