Spatiotemporal expression of endospore appendages and cryo-EM insights into Ena1C-mediated S-ENA anchoring in Bacillus paranthracis

spatiotemporal-expression-of-endospore-appendages-and-cryo-em-insights-into-ena1c-mediated-s-ena-anchoring-in-bacillus-paranthracis
Spatiotemporal expression of endospore appendages and cryo-EM insights into Ena1C-mediated S-ENA anchoring in Bacillus paranthracis

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

Abstract

The endospores of many Bacillus cereus group species are decorated with highly resilient fibrous structures known as endospore appendages (ENAs), whose precise biological functions remain poorly understood. Structural and genetic studies have identified ena1A, ena1B, and ena1C as essential for forming the longer, thicker, and most abundant staggered (S)-ENA fibers in Bacillus paranthracis, whereas ena3A encodes the major subunit of the shorter, thinner, ladder-like (L)-ENAs. Here, we investigated the spatiotemporal expression dynamics of S- and L-ENA proteins and the specific role of Ena1C in S-ENA biogenesis. Using time-lapse fluorescence microscopy, we observed strict temporal regulation of ena gene expression, with no detectable ENA subunit production before spores became phase-bright. ENAs expression peaked during late sporulation phase, with fluorescence localized around the developing spore until its release; notably, S-ENA subunit expression began approximately one hour earlier than that of L-ENA subunits. Combining cryo-EM, negative-stain transmission electron microscopy, and genetic analyses, we show that Ena1C forms a nonameric ring-like structure required for tethering S-ENA to the spore surface. These findings provide new insights into the regulation of ENAs’ expression during fiber biogenesis and highlight their temporal coordination with spore coat and exosporium development.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author(s) on reasonable request.

References

  1. Hachisuka, Y. & Kuno, T. Filamentous appendages of Bacillus cereus spores. Jpn J. Microbiol. https://doi.org/10.1111/j.1348-0421.1976.tb01025.x (1976).

    Google Scholar 

  2. Ankolekar, C. & Labbé, R. G. Physical characteristics of spores of food-associated isolates of the Bacillus cereus group. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02116-09 (2010).

    Google Scholar 

  3. Hachisuka, Y., Kozuka, S. & Tsujikawa, M. Exosporia and appendages of spores of Bacillus species. Microbiol. Immunol. https://doi.org/10.1111/j.1348-0421.1984.tb00714.x (1984).

    Google Scholar 

  4. Jonsmoen, U. L. et al. Endospore pili: Flexible, stiff, and sticky nanofibers. Biophys. J. 122, 2696–2706 (2023).

    Google Scholar 

  5. Pradhan, B. et al. Endospore appendages: a novel Pilus superfamily from the endospores of pathogenic bacilli. EMBO J. https://doi.org/10.15252/embj.2020106887 (2021).

    Google Scholar 

  6. Sleutel, M. et al. Helical ultrastructure of the L-ENA spore aggregation factor of a Bacillus paranthracis foodborne outbreak strain. Nat. Commun. 15, 7514 (2024).

    Google Scholar 

  7. Sleutel, M. et al. Cryo-EM identifies F-ENA of Bacillus Thuringiensis as a widespread family of endospore appendages across firmicutes. Nat. Commun. 16, 7652 (2025).

    Google Scholar 

  8. Rode, L. J., Crawford, M. A. & Williams, M. G. Clostridium spores with ribbon-like appendages. J. Bacteriol. https://doi.org/10.1128/jb.93.3.1160-1173.1967 (1967).

    Google Scholar 

  9. Zegeye, E. D., Pradhan, B., Llarena, A. K. & Aspholm, M. Enigmatic Pilus-Like endospore appendages of Bacillus cereus group species. Int J. Mol. Sci 22, (2021).

  10. Jonsmoen, U. L. et al. The role of endospore appendages in spore-spore interactions in the pathogenic Bacillus cereus group. Environ. Microbiol. 26, e16678 (2024).

    Google Scholar 

  11. Albertsdottir Jonsmoen, U. L. et al. Endospore appendages enhance adhesion of Bacillus cereus sensu lato spores to industrial surfaces, modulated by physicochemical factors. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.00944-25 (2025).

    Google Scholar 

  12. Janes, B. K. & Stibitz, S. Routine markerless gene replacement in Bacillus anthracis. Infect. Immun. 74, 1949–1953 (2006).

    Google Scholar 

  13. Zegeye, E. D. & Aspholm, M. Efficient electrotransformation of Bacillus Thuringiensis for gene manipulation and expression. Curr. Protoc. 2, e588 (2022).

    Google Scholar 

  14. Yi, Y. et al. Optimized fluorescent proteins for the rhizosphere-associated bacterium Bacillus mycoides with endophytic and biocontrol agent potential. Environ. Microbiol. Rep. 10, 57–74 (2018).

    Google Scholar 

  15. Arantes, O. & Lereclus, D. Construction of cloning vectors for Bacillus Thuringiensis. Gene 108, 115–119 (1991).

    Google Scholar 

  16. Eijlander, R. T. & Kuipers, O. P. Live-Cell imaging tool optimization to study gene expression levels and dynamics in single cells of Bacillus cereus. Appl. Environ. Microbiol. 79, 5643–5651 (2013).

    Google Scholar 

  17. Donadio, G., Lanzilli, M., Sirec, T., Ricca, E. & Isticato, R. Localization of a red fluorescence protein adsorbed on wild type and mutant spores of Bacillus subtilis. Microb. Cell. Fact. 15, 153 (2016).

    Google Scholar 

  18. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Google Scholar 

  19. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 14, 290–296 (2017).

    Google Scholar 

  20. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  21. Meng, E. C. et al. UCSF chimerax: tools for structure Building and analysis. Protein Science 32, (2023).

  22. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Google Scholar 

  23. He, J., Li, T. & Huang, S. Y. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat. Commun. 14, 3217 (2023).

    Google Scholar 

  24. Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods. 15, 47–51 (2018).

    Google Scholar 

  25. Faille, C. et al. Viability and surface properties of spores subjected to a cleaning-in-place procedure: consequences on their ability to contaminate surfaces of equipment. Food Microbiol. https://doi.org/10.1016/j.fm.2010.04.001 (2010).

    Google Scholar 

  26. Tauveron, G., Slomianny, C., Henry, C. & Faille, C. Variability among Bacillus cereus strains in spore surface properties and influence on their ability to contaminate food surface equipment. Int. J. Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2006.04.027 (2006).

    Google Scholar 

  27. Nanasaki, Y., Hagiwara, T., Watanabe, H. & Sakiyama, T. Removability of bacterial spores made adherent to solid surfaces from suspension with and without drying. Food Control. 21, 1472–1477 (2010).

    Google Scholar 

  28. Simmonds, P., Mossel, B. L., Intaraphan, T. & Deeth, H. C. Heat resistance of Bacillus spores when adhered to stainless steel and its relationship to spore hydrophobicity. J. Food Prot. 66, 2070–2075 (2003).

    Google Scholar 

  29. Rubio, S. L. & Moldenhauer, J. E. Effect of rubber stopper composition, preservative pretreatment and rinse water temperature on the moist heat resistance of Bacillus stearothermophilus ATCC 12980. PDA J. Pharm. Sci. Technol 49, (1995).

  30. Peng, Q. et al. The regulation of Exosporium-Related genes in Bacillus Thuringiensis. Sci. Rep. 6, 19005 (2016).

    Google Scholar 

  31. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, e328 (2004).

    Google Scholar 

  32. Meisner, J., Wang, X., Serrano, M., Henriques, A. O. & Moran, C. P. A channel connecting the mother cell and forespore during bacterial endospore formation. Proc. Natl. Acad. Sci. U S A. 105, 15100–15105 (2008).

    Google Scholar 

  33. Rodrigues, C. D. A. et al. A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. U S A. 113, 11585–11590 (2016).

    Google Scholar 

  34. Ramírez-Guadiana, F. H. et al. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. PLoS Genet. 13, e1007015 (2017).

    Google Scholar 

  35. Munoz, L., Sadaie, Y. & Doi, R. H. Spore coat protein of Bacillus subtilis. Structure and precursor synthesis. J. Biol. Chem. 253, 6694–6701 (1978).

    Google Scholar 

  36. Ohye, D. F. & Murrell, W. G. Exosporium and spore coat formation in Bacillus cereus T. J. Bacteriol. 115, 1179–1190 (1973).

    Google Scholar 

  37. McKenney, P. T. & Eichenberger, P. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol. Microbiol. 83, 245–260 (2012).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Department of Molecular Genetics, University of Groningen, the Netherlands, for hosting E.D.Z and Lene Cecilie Hermansen (NMBU Imaging Center) for assistance with TEM imaging.

Funding

M.A. acknowledges funding from the Norwegian Research Council (NFR), grant number 335029- FORSKER22, and internal funding of NMBU. E.D.Z gratefully acknowledges financial support from the internal funding scheme at Norwegian University of Life Sciences (project no. 1211130114), which financed the international research stay at the University of Groningen, the Netherlands.

Author information

Author notes

  1. Jingqi Chen

    Present address: Department of Chemistry and the Carl R. Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Urbana, USA

Authors and Affiliations

  1. Department of Paraclinical Sciences, Faculty of Veterinary Medicine , Norwegian University of Life Sciences (NMBU) , Ås, 1433, Norway

    Ephrem Debebe Zegeye, Unni Lise Jonsmoen, Yohannes Beyene Mekonnen & Marina Aspholm

  2. Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium

    Mike Sleutel & Han Remaut

  3. Structural and Molecular Microbiology Structural Biology Research Center, VIB, Brussels, Belgium

    Mike Sleutel & Han Remaut

  4. Molecular Genetics Group Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Groningen, The Netherlands

    Jingqi Chen, Luiza P. Morawska & Oscar P. Kuipers

Authors

  1. Ephrem Debebe Zegeye
  2. Mike Sleutel
  3. Unni Lise Jonsmoen
  4. Jingqi Chen
  5. Luiza P. Morawska
  6. Yohannes Beyene Mekonnen
  7. Oscar P. Kuipers
  8. Han Remaut
  9. Marina Aspholm

Contributions

E.D.Z, M.A., M.S. O.K. and H.R. designed the project. E.D.Z designed and generated all *B. paranthracis* constructs, performed time-lapse microscopy experiments, nsTEM and conducted image analyses with assistance from J.C., L.P.M, and YBM. M.S. expressed recombinant Ena1C and performed cryo-EM imaging, Alphafold modelling and data processing. U.L.J conducted nsTEM imaging and analysis. E.D.Z. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Ephrem Debebe Zegeye or Marina Aspholm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegeye, E.D., Sleutel, M., Jonsmoen, U.L. et al. Spatiotemporal expression of endospore appendages and cryo-EM insights into Ena1C-mediated S-ENA anchoring in Bacillus paranthracis. Sci Rep (2026). https://doi.org/10.1038/s41598-026-38321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-026-38321-0

Keywords

Supplementary Material 1Supplementary Material 2Supplementary Material 3Supplementary Material 4Supplementary Material 5Supplementary Material 6