Squidiff: predicting cellular development and responses to perturbations using a diffusion model

squidiff:-predicting-cellular-development-and-responses-to-perturbations-using-a-diffusion-model
Squidiff: predicting cellular development and responses to perturbations using a diffusion model
  • Schneider, G., Schmidt-Supprian, M., Rad, R. & Saur, D. Tissue-specific tumorigenesis: context matters. Nat. Rev. Cancer 17, 239–253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Rafelski, S. M. & Theriot, J. A. Establishing a conceptual framework for holistic cell states and state transitions. Cell 187, 2633–2651 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Gullapalli, R. R., Desai, K. V., Santana-Santos, L., Kant, J. A. & Becich, M. J. Next generation sequencing in clinical medicine: challenges and lessons for pathology and biomedical informatics. J. Pathol. Inform. 3, 40 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Kana, O. et al. Generative modeling of single-cell gene expression for dose-dependent chemical perturbations. Patterns 4, 100817 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunne, C. et al. Learning single-cell perturbation responses using neural optimal transport. Nat. Methods 20, 1759–1768 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927–935 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. & Zou, J. Simple and effective embedding model for single-cell biology built from ChatGPT. Nat. Biomed. Eng. 9, 483–493 (2025).

    Article  PubMed  Google Scholar 

  • Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In 2nd International Conference on Learning Representations (ICLR 2014) (eds Bengio, Y. & LeCun, Y.) (OpenReview, 2014).

  • Yang, L. et al. Diffusion models: a comprehensive survey of methods and applications. ACM Comput. Surv. 56, 1–39 (2023).

    Article  Google Scholar 

  • Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems 33 (NeurIPS 2020) (eds Larochelle, H. et al.) 6840–6851 (Curran Associates, 2020).

  • Guo, Z. et al. Diffusion models in bioinformatics and computational biology. Nat. Rev. Bioeng. 2, 136–154 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-resolution image synthesis with latent diffusion models. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 10684–10695 (IEEE, 2022).

  • Pandey, K., Mukherjee, A., Rai, P. & Kumar, A. VAEs meet diffusion models: efficient and high-fidelity generation. In NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications (OpenReview, 2021); https://openreview.net/pdf?id=-J8dM4ed_92

  • Sadria, M. & Layton, A. scVAEDer: integrating deep diffusion models and variational autoencoders for single-cell transcriptomics analysis. Genome Biol. 26, 64 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, E., Hao, M., Wei, L. & Zhang, X. scDiffusion: conditional generation of high-quality single-cell data using diffusion model. Bioinformatics 40, btae518 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W. et al. A general single-cell analysis framework via conditional diffusion generative models. Preprint at bioRxiv https://doi.org/10.1101/2023.10.13.562243 (2023).

  • Preechakul, K., Chatthee, N., Wizadwongsa, S. & Suwajanakorn, S. Diffusion autoencoders: toward a meaningful and decodable representation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 10619–10629 (IEEE, 2022).

  • Bunne, C. et al. How to build the virtual cell with artificial intelligence: priorities and opportunities. Cell 187, 7045–7063 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J., Meng, C. & Ermon, S. Denoising diffusion implicit models. In 9th International Conference on Learning Representations (ICLR 2021) (OpenReview, 2021); https://openreview.net/pdf?id=St1giarCHLP

  • Yahaya, B. H. Organoid Technology for Disease Modelling and Personalized Treatment (Springer Nature, 2022).

  • Nikolova, M. T. et al. Fate and state transitions during human blood vessel organoid development. Cell 188, 3329–3348.e31 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

    Google Scholar 

  • Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuomo, A. S. E., et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11, 810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Schrode, N., Saiz, N., Di Talia, S. & Hadjantonakis, A.-K. GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev. Cell 29, 454–467 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, V. & Beddington, R. Expression of T protein in the primitive streak is necessary and sufficient for posterior mesoderm movement and somite differentiation. Dev. Biol. 192, 45–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannoodt, R. et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. Preprint at bioRxiv https://doi.org/10.1101/079509 (2016).

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, W., et al. Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq. Genome Med. 13, 82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, X., et al. Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery. Nat. Commun. 15, 9256 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivatsan, S. R., et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S. et al. Organoids: the current status and biomedical applications. MedComm 4, e274 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y. et al. Deciphering the impact of aging on splenic endothelial cell heterogeneity and immunosenescence through single-cell RNA sequencing analysis. Immun. Ageing 21, 48 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mettler, F. A. Jr & Voelz, G. L. Major radiation exposure — what to expect and how to respond. N. Engl. J. Med. 346, 1554–1561 (2002).

    Article  PubMed  Google Scholar 

  • Kameni, L. E. et al. A review of radiation-induced vascular injury and clinical impact. Ann. Plast. Surg. 92, 181–185 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Durante, M. New challenges in high-energy particle radiobiology. Br. J. Radiol. 87, 20130626 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakol, D. N. et al. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 301, 122267 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chancellor, J. C., Scott, G. B. I. & Sutton, J. P. Space radiation: the number one risk to astronaut health beyond low earth orbit. Life 4, 491–510 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijerathne, H. et al. Mechanisms of radiation-induced endothelium damage: emerging models and technologies. Radiother. Oncol. 158, 21–32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliner, J. D., Saiki, A. Y. & Caenepeel, S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb. Perspect. Med. 6, a026336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruef, C. & Coleman, D. L. Granulocyte–macrophage colony-stimulating factor: pleiotropic cytokine with potential clinical usefulness. Rev. Infect. Dis. 12, 41–62 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Ping, S., Qiu, X., Gonzalez-Toledo, M. E., Liu, X. & Zhao, L.-R. Stem cell factor in combination with granulocyte colony-stimulating factor reduces cerebral capillary thrombosis in a mouse model of CADASIL. Cell Transplant. 27, 637–647 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Furmento, V. A., Marino, J., Blank, V. C. & Roguin, L. P. The granulocyte colony-stimulating factor (G-CSF) upregulates metalloproteinase-2 and VEGF through PI3K/Akt and Erk1/2 activation in human trophoblast Swan 71 cells. Placenta 35, 937–946 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Boneberg, E. M. & Hartung, T. Molecular aspects of anti-inflammatory action of G-CSF. Inflamm. Res. 51, 119–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Magné, N. et al. NF-κB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett. 231, 158–168 (2006).

    Article  PubMed  Google Scholar 

  • Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).

    Article  PubMed  Google Scholar 

  • Delp, M. D., Charvat, J. M., Limoli, C. L., Globus, R. K. & Ghosh, P. Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci. Rep. 6, 29901 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcellos-Hoff, M. H., et al. Concepts and challenges in cancer risk prediction for the space radiation environment. Life Sci. Space Res. 6, 92–103 (2015).

    Google Scholar 

  • Ho, J. et al. Video diffusion models. Adv. Neural Inf. Process. Syst. 35, 8633–8646 (2022).

    Google Scholar 

  • Wu, K. E. et al. Protein structure generation via folding diffusion. Nat. Commun. 15, 1059 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virshup, I. et al. The scverse project provides a computational ecosystem for single-cell omics data analysis. Nat. Biotechnol. 41, 604–606 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Werschler, N. & Penninger, J. Generation of human blood vessel organoids from pluripotent stem cells. J. Vis. Exp. https://doi.org/10.3791/64715 (2023).

    Article  PubMed  Google Scholar 

  • Tomer, R. et al. SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796–1806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. et al. Accelerator-based biological irradiation facility simulating neutron exposure from an improvised nuclear device. Radiat. Res. 184, 404–410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: application to a neutron spectrum similar to that from an improvised nuclear device. Nucl. Instrum. Methods Phys. Res. A 794, 234–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakol, D. N. et al. Modeling the effects of protracted cosmic radiation in a human organ-on-chip platform. Adv. Sci. 11, 2401415 (2024).

    Article  CAS  Google Scholar 

  • Holden, S. et al. Effects of acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure on behavioral and cognitive performance in mice. Radiat. Res. 196, 31–39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, S. et al. Squidiff. Zenodo https://doi.org/10.5281/zenodo.15061773 (2025).

  • Cuomo, A. S. E. Single-cell RNA-sequencing of iPS cells differentiating towards definitive endoderm. Zenodo https://zenodo.org/records/3625024#.Xil-0y2cZ0s (2020).

  • He, S. et al. Squidiff: predicting cellular development and responses to perturbations using a diffusion model. figshare https://doi.org/10.6084/m9.figshare.27948633 (2025).