Staphylococcus capitis strain producing dual bacteriocins, capidermicin and micrococcin P1, shows broad-spectrum antimicrobial activity

staphylococcus-capitis-strain-producing-dual-bacteriocins,-capidermicin-and-micrococcin-p1,-shows-broad-spectrum-antimicrobial-activity
Staphylococcus capitis strain producing dual bacteriocins, capidermicin and micrococcin P1, shows broad-spectrum antimicrobial activity

References

  1. GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).

    Google Scholar 

  2. Karaman, R., Jubeh, B. & Breijyeh, Z. Resistance of Gram-Positive bacteria to current antibacterial agents and overcoming approaches. Molecules 25, (2020).

  3. Sousa, S. A. et al. Bacterial nosocomial infections: multidrug resistance as a trigger for the development of novel antimicrobials. Antibiotics (Basel) 10, (2021).

  4. Wong, J. W. et al. Prevalence and risk factors of community-associated methicillin-resistant Staphylococcus aureus carriage in Asia-Pacific region from 2000 to 2016: a systematic review and meta-analysis. Clin. Epidemiol. 10, 1489–1501 (2018).

    Google Scholar 

  5. Nakaminami, H. Molecular epidemiological features of Methicillin-Resistant Staphylococcus aureus in Japan. Biol. Pharm. Bull. 48, 196–204 (2025).

    Google Scholar 

  6. Tsiodras, S. et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358, 207–208 (2001).

    Google Scholar 

  7. Munita, J. M., Bayer, A. S. & Arias, C. A. Evolving resistance among Gram-positive pathogens. Clin. Infect. Dis. 61 (Suppl 2), S48–57 (2015).

    Google Scholar 

  8. Harada, Y. et al. Nosocomial spread of meticillin-resistant Staphylococcus aureus with β-lactam-inducible Arbekacin resistance. J. Med. Microbiol. 63, 710–714 (2014).

    Google Scholar 

  9. Shariati, A. et al. Global prevalence and distribution of Vancomycin resistant, Vancomycin intermediate and heterogeneously Vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci. Rep. 10, 12689 (2020).

    Google Scholar 

  10. Wu, Q. et al. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob. Resist. Infect. Control. 10, 101 (2021).

    Google Scholar 

  11. Faron, M. L., Ledeboer, N. A. & Buchan, B. W. Resistance Mechanisms, Epidemiology, and approaches to screening for Vancomycin-Resistant Enterococcus in the health care setting. J. Clin. Microbiol. 54, 2436–2447 (2016).

    Google Scholar 

  12. Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).

    Google Scholar 

  13. Jack, R. W., Tagg, J. R. & Ray, B. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 171–200 (1995).

    Google Scholar 

  14. Nisar, S., Shah, A. H. & Nazir, R. The clinical praxis of bacteriocins as natural anti-microbial therapeutics. Arch. Microbiol. 206, 451 (2024).

    Google Scholar 

  15. Bastos, M. C. F., Ceotto, H., Coelho, M. L. V. & Nascimento, J. S. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr. Pharm. Biotechnol. 10, 38–61 (2009).

    Google Scholar 

  16. Suzuki, Y. et al. The two-component regulatory systems GraRS and SrrAB mediate Staphylococcus aureus susceptibility to Pep5 produced by clinical isolate of Staphylococcus epidermidis. Appl. Environ. Microbiol. 90, e0030024 (2024).

    Google Scholar 

  17. Nakazono, K. et al. Complete sequences of epidermin and Nukacin encoding plasmids from oral-derived Staphylococcus epidermidis and their antibacterial activity. PLoS One. 17, e0258283 (2022).

    Google Scholar 

  18. Kumar, R., Jangir, P. K., Das, J., Taneja, B. & Sharma, R. Genome analysis of Staphylococcus capitis TE8 reveals repertoire of antimicrobial peptides and adaptation strategies for growth on human skin. Sci. Rep. 7, 10447 (2017).

    Google Scholar 

  19. O’Sullivan, J. N. et al. Nisin J, a novel natural Nisin Variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. J Bacteriol 202, (2020).

  20. Lynch, D. et al. Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS One. 14, e0223541 (2019).

    Google Scholar 

  21. Fernández-Fernández, R. et al. Genomic analysis of Bacteriocin-Producing staphylococci: high prevalence of lanthipeptides and the micrococcin P1 biosynthetic gene clusters. Probiotics Antimicrob. Proteins. 17, 159–174 (2025).

    Google Scholar 

  22. Liu, Y. et al. Skin microbiota analysis-inspired development of novel anti-infectives. Microbiome 8, 85 (2020).

    Google Scholar 

  23. Wan, Y. et al. Complete genome assemblies and antibiograms of 22 Staphylococcus capitis isolates. BMC Genom Data. 26, 12 (2025).

    Google Scholar 

  24. Fernández-Fernández, R. et al. Detection and evaluation of the antimicrobial activity of micrococcin P1 isolated from commensal and environmental Staphylococcal isolates against MRSA. Int. J. Antimicrob. Agents. 62, 106965 (2023).

    Google Scholar 

  25. de Freire Bastos, M. C., Miceli de Farias, F., Carlin Fagundes, P. & Varella Coelho, M. L. Staphylococcins: an update on antimicrobial peptides produced by Staphylococci and their diverse potential applications. Appl. Microbiol. Biotechnol. 104, 10339–10368 (2020).

    Google Scholar 

  26. Ovchinnikov, K. V. et al. A strong synergy between the thiopeptide bacteriocin micrococcin P1 and rifampicin against MRSA in a murine skin infection model. Front. Immunol. 12, 676534 (2021).

    Google Scholar 

  27. Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and Post-Translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).

    Google Scholar 

  28. Ciufolini, M. A. & Lefranc, D. Micrococcin P1: structure, biology and synthesis. Nat. Prod. Rep. 27, 330–342 (2010).

    Google Scholar 

  29. Liu, Y. et al. Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin P1. J. Extracell. Vesicles. 11, e12212 (2022).

    Google Scholar 

  30. Reifsteck, F., Wee, S. & Wilkinson, B. J. Hydrophobicity-hydrophilicity of Staphylococci. J. Med. Microbiol. 24, 65–73 (1987).

    Google Scholar 

  31. Rawlinson, L. A. B., O’Gara, J. P., Jones, D. S. & Brayden, D. J. Resistance of Staphylococcus aureus to the cationic antimicrobial agent poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) is influenced by cell-surface charge and hydrophobicity. J. Med. Microbiol. 60, 968–976 (2011).

    Google Scholar 

  32. Li, M. et al. Lethal hydroxyl radical accumulation by a lactococcal bacteriocin, lacticin Q. Antimicrob. Agents Chemother. 57, 3897–3902 (2013).

    Google Scholar 

  33. Netz, D. J. A., Bastos, M. do C. de F. & Sahl, H.-G. Mode of action of the antimicrobial peptide Aureocin A53 from Staphylococcus aureus. Appl. Environ. Microbiol. 68, 5274–5280 (2002).

    Google Scholar 

  34. Lynch, D., Hill, C., Field, D. & Begley, M. Inhibition of Listeria monocytogenes by the Staphylococcus capitis – derived bacteriocin capidermicin. Food Microbiol. 94, 103661 (2021).

    Google Scholar 

  35. Brdová, D., Ruml, T. & Viktorová, J. Mechanism of Staphylococcal resistance to clinically relevant antibiotics. Drug Resist. Updat. 77, 101147 (2024).

    Google Scholar 

  36. Nam, E. Y. et al. Emergence of Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus clinical isolates among Daptomycin-Naive patients in Korea. Microb. Drug Resist. 24, 534–541 (2018).

    Google Scholar 

  37. Ernst, C. M. & Peschel, A. MprF-mediated daptomycin resistance. Int. J. Med. Microbiol. 309, 359–363 (2019).

    Google Scholar 

  38. Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).

    Google Scholar 

  39. Varani, A., He, S., Siguier, P., Ross, K. & Chandler, M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob. DNA. 12, 11 (2021).

    Google Scholar 

  40. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol. Rev 31, (2018).

  41. Memariani, H., Memariani, M., Eskandari, S. E. & Ghasemian, A. Nour Neamatollahi, A. The potential role of probiotics and their bioactive compounds in the management of pulmonary tuberculosis. J. Infect. Public. Health. 18, 102840 (2025).

    Google Scholar 

  42. Roy, S. & Dhaneshwar, S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: current perspectives. World J. Gastroenterol. 29, 2078–2100 (2023).

    Google Scholar 

  43. Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian Gastrointestinal tract. Nature 526, 719–722 (2015).

    Google Scholar 

  44. Laurent, F. & Butin, M. Staphylococcus capitis and NRCS-A clone: the story of an unrecognized pathogen in neonatal intensive care units. Clin. Microbiol. Infect. 25, 1081–1085 (2019).

    Google Scholar 

  45. Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins – a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2013).

    Google Scholar 

  46. Kusaka, S. et al. Oral and rectal colonization of methicillin-resistant Staphylococcus aureus in long-term care facility residents and their association with clinical status. Microbiol. Immunol. 68, 75–89 (2024).

    Google Scholar 

  47. Kawayanagi, T. et al. The oral cavity is a potential reservoir of gram-negative antimicrobial-resistant bacteria, which are correlated with ageing and the number of teeth. Heliyon 10, e39827 (2024).

    Google Scholar 

  48. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Google Scholar 

  49. van Heel, A. J. et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).

    Google Scholar 

  50. Blin, K. et al. AntiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    Google Scholar 

  51. Alikhan, N. F., Petty, N. K., Zakour, B., Beatson, S. A. & N. L. & BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genom. 12, 402 (2011).

    Google Scholar 

  52. Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).

    Google Scholar 

  53. Ersfeld-Dressen, H., Sahl, H. G. & Brandis, H. Plasmid involvement in production of and immunity to the staphylococcin-like peptide Pep 5. J. Gen. Microbiol. 130, 3029–3035 (1984).

    Google Scholar 

Download references