References
-
GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).
-
Karaman, R., Jubeh, B. & Breijyeh, Z. Resistance of Gram-Positive bacteria to current antibacterial agents and overcoming approaches. Molecules 25, (2020).
-
Sousa, S. A. et al. Bacterial nosocomial infections: multidrug resistance as a trigger for the development of novel antimicrobials. Antibiotics (Basel) 10, (2021).
-
Wong, J. W. et al. Prevalence and risk factors of community-associated methicillin-resistant Staphylococcus aureus carriage in Asia-Pacific region from 2000 to 2016: a systematic review and meta-analysis. Clin. Epidemiol. 10, 1489–1501 (2018).
-
Nakaminami, H. Molecular epidemiological features of Methicillin-Resistant Staphylococcus aureus in Japan. Biol. Pharm. Bull. 48, 196–204 (2025).
-
Tsiodras, S. et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358, 207–208 (2001).
-
Munita, J. M., Bayer, A. S. & Arias, C. A. Evolving resistance among Gram-positive pathogens. Clin. Infect. Dis. 61 (Suppl 2), S48–57 (2015).
-
Harada, Y. et al. Nosocomial spread of meticillin-resistant Staphylococcus aureus with β-lactam-inducible Arbekacin resistance. J. Med. Microbiol. 63, 710–714 (2014).
-
Shariati, A. et al. Global prevalence and distribution of Vancomycin resistant, Vancomycin intermediate and heterogeneously Vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Sci. Rep. 10, 12689 (2020).
-
Wu, Q. et al. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob. Resist. Infect. Control. 10, 101 (2021).
-
Faron, M. L., Ledeboer, N. A. & Buchan, B. W. Resistance Mechanisms, Epidemiology, and approaches to screening for Vancomycin-Resistant Enterococcus in the health care setting. J. Clin. Microbiol. 54, 2436–2447 (2016).
-
Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777–788 (2005).
-
Jack, R. W., Tagg, J. R. & Ray, B. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 171–200 (1995).
-
Nisar, S., Shah, A. H. & Nazir, R. The clinical praxis of bacteriocins as natural anti-microbial therapeutics. Arch. Microbiol. 206, 451 (2024).
-
Bastos, M. C. F., Ceotto, H., Coelho, M. L. V. & Nascimento, J. S. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr. Pharm. Biotechnol. 10, 38–61 (2009).
-
Suzuki, Y. et al. The two-component regulatory systems GraRS and SrrAB mediate Staphylococcus aureus susceptibility to Pep5 produced by clinical isolate of Staphylococcus epidermidis. Appl. Environ. Microbiol. 90, e0030024 (2024).
-
Nakazono, K. et al. Complete sequences of epidermin and Nukacin encoding plasmids from oral-derived Staphylococcus epidermidis and their antibacterial activity. PLoS One. 17, e0258283 (2022).
-
Kumar, R., Jangir, P. K., Das, J., Taneja, B. & Sharma, R. Genome analysis of Staphylococcus capitis TE8 reveals repertoire of antimicrobial peptides and adaptation strategies for growth on human skin. Sci. Rep. 7, 10447 (2017).
-
O’Sullivan, J. N. et al. Nisin J, a novel natural Nisin Variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. J Bacteriol 202, (2020).
-
Lynch, D. et al. Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS One. 14, e0223541 (2019).
-
Fernández-Fernández, R. et al. Genomic analysis of Bacteriocin-Producing staphylococci: high prevalence of lanthipeptides and the micrococcin P1 biosynthetic gene clusters. Probiotics Antimicrob. Proteins. 17, 159–174 (2025).
-
Liu, Y. et al. Skin microbiota analysis-inspired development of novel anti-infectives. Microbiome 8, 85 (2020).
-
Wan, Y. et al. Complete genome assemblies and antibiograms of 22 Staphylococcus capitis isolates. BMC Genom Data. 26, 12 (2025).
-
Fernández-Fernández, R. et al. Detection and evaluation of the antimicrobial activity of micrococcin P1 isolated from commensal and environmental Staphylococcal isolates against MRSA. Int. J. Antimicrob. Agents. 62, 106965 (2023).
-
de Freire Bastos, M. C., Miceli de Farias, F., Carlin Fagundes, P. & Varella Coelho, M. L. Staphylococcins: an update on antimicrobial peptides produced by Staphylococci and their diverse potential applications. Appl. Microbiol. Biotechnol. 104, 10339–10368 (2020).
-
Ovchinnikov, K. V. et al. A strong synergy between the thiopeptide bacteriocin micrococcin P1 and rifampicin against MRSA in a murine skin infection model. Front. Immunol. 12, 676534 (2021).
-
Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and Post-Translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).
-
Ciufolini, M. A. & Lefranc, D. Micrococcin P1: structure, biology and synthesis. Nat. Prod. Rep. 27, 330–342 (2010).
-
Liu, Y. et al. Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin P1. J. Extracell. Vesicles. 11, e12212 (2022).
-
Reifsteck, F., Wee, S. & Wilkinson, B. J. Hydrophobicity-hydrophilicity of Staphylococci. J. Med. Microbiol. 24, 65–73 (1987).
-
Rawlinson, L. A. B., O’Gara, J. P., Jones, D. S. & Brayden, D. J. Resistance of Staphylococcus aureus to the cationic antimicrobial agent poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) is influenced by cell-surface charge and hydrophobicity. J. Med. Microbiol. 60, 968–976 (2011).
-
Li, M. et al. Lethal hydroxyl radical accumulation by a lactococcal bacteriocin, lacticin Q. Antimicrob. Agents Chemother. 57, 3897–3902 (2013).
-
Netz, D. J. A., Bastos, M. do C. de F. & Sahl, H.-G. Mode of action of the antimicrobial peptide Aureocin A53 from Staphylococcus aureus. Appl. Environ. Microbiol. 68, 5274–5280 (2002).
-
Lynch, D., Hill, C., Field, D. & Begley, M. Inhibition of Listeria monocytogenes by the Staphylococcus capitis – derived bacteriocin capidermicin. Food Microbiol. 94, 103661 (2021).
-
Brdová, D., Ruml, T. & Viktorová, J. Mechanism of Staphylococcal resistance to clinically relevant antibiotics. Drug Resist. Updat. 77, 101147 (2024).
-
Nam, E. Y. et al. Emergence of Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus clinical isolates among Daptomycin-Naive patients in Korea. Microb. Drug Resist. 24, 534–541 (2018).
-
Ernst, C. M. & Peschel, A. MprF-mediated daptomycin resistance. Int. J. Med. Microbiol. 309, 359–363 (2019).
-
Siguier, P., Gourbeyre, E. & Chandler, M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).
-
Varani, A., He, S., Siguier, P., Ross, K. & Chandler, M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob. DNA. 12, 11 (2021).
-
Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol. Rev 31, (2018).
-
Memariani, H., Memariani, M., Eskandari, S. E. & Ghasemian, A. Nour Neamatollahi, A. The potential role of probiotics and their bioactive compounds in the management of pulmonary tuberculosis. J. Infect. Public. Health. 18, 102840 (2025).
-
Roy, S. & Dhaneshwar, S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: current perspectives. World J. Gastroenterol. 29, 2078–2100 (2023).
-
Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian Gastrointestinal tract. Nature 526, 719–722 (2015).
-
Laurent, F. & Butin, M. Staphylococcus capitis and NRCS-A clone: the story of an unrecognized pathogen in neonatal intensive care units. Clin. Microbiol. Infect. 25, 1081–1085 (2019).
-
Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins – a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2013).
-
Kusaka, S. et al. Oral and rectal colonization of methicillin-resistant Staphylococcus aureus in long-term care facility residents and their association with clinical status. Microbiol. Immunol. 68, 75–89 (2024).
-
Kawayanagi, T. et al. The oral cavity is a potential reservoir of gram-negative antimicrobial-resistant bacteria, which are correlated with ageing and the number of teeth. Heliyon 10, e39827 (2024).
-
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).
-
van Heel, A. J. et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).
-
Blin, K. et al. AntiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).
-
Alikhan, N. F., Petty, N. K., Zakour, B., Beatson, S. A. & N. L. & BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genom. 12, 402 (2011).
-
Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).
-
Ersfeld-Dressen, H., Sahl, H. G. & Brandis, H. Plasmid involvement in production of and immunity to the staphylococcin-like peptide Pep 5. J. Gen. Microbiol. 130, 3029–3035 (1984).
