Stem cells in space: microgravity effects on stem cell fate and implications for regenerative medicine

stem-cells-in-space:-microgravity-effects-on-stem-cell-fate-and-implications-for-regenerative-medicine
Stem cells in space: microgravity effects on stem cell fate and implications for regenerative medicine

References

  1. Mahla, R. S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016, 6940283 (2016).

    Google Scholar 

  2. Teixeira, F. G., Carvalho, M. M., Sousa, N. & Salgado, A. J. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol. Life Sci. 70, 3871–82 (2013).

    Google Scholar 

  3. Golchin, A. et al. Embryonic stem cells in clinical trials: current overview of developments and challenges. Adv. Exp. Med. Biol. 1312, 19–37 (2021).

    Google Scholar 

  4. Cerneckis, J., Cai, H. & Shi, Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct. Target Ther. 9, 112 (2024).

    Google Scholar 

  5. Yao, J., Mu, Y. & Gage, F. H. Neural stem cells: mechanisms and modeling. Protein Cell 3, 251–61 (2012).

    Google Scholar 

  6. Zhang, C. et al. Base editors-mediated gene therapy in hematopoietic stem cells for hematologic diseases. Stem Cell Rev. Rep. 20, 1387–405 (2024).

    Google Scholar 

  7. Maldonado, V. V., Jensen, H., Barnes, C. L. & Samsonraj, R. M. Phenotypic changes associated with continuous long term in vitro expansion of bone marrow-derived mesenchymal stem cells. Biochimie 234, 62–75 (2025).

    Google Scholar 

  8. Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27, 523–31 (2020).

    Google Scholar 

  9. Najrana, T. & Sanchez-Esteban, J. Mechanotransduction as an adaptation to gravity. Front. Pediatr. 4, 140 (2016).

    Google Scholar 

  10. Wu, F. et al. Single-cell analysis identifies conserved features of immune dysfunction in simulated microgravity and spaceflight. Nat. Commun. 15, 4795 (2024).

    Google Scholar 

  11. Grimm, D. et al. Tissue engineering under microgravity conditions-use of stem cells and specialized cells. Stem Cells Dev. 27, 787–804 (2018).

    Google Scholar 

  12. Moreno-Villanueva, M. et al. Interplay of space radiation and microgravity in DNA damage and DNA damage response. NPJ Microgravity 3, 14 (2017).

    Google Scholar 

  13. Nishimura, Y. Technology using simulated microgravity. Regen. Ther. 24, 318–23 (2023).

    Google Scholar 

  14. Ulbrich, C. et al. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed. Res. Int. 2014, 928507 (2014).

    Google Scholar 

  15. Huang, P. et al. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity 6, 16 (2020).

    Google Scholar 

  16. Timilsina, S. et al. Enhanced self-renewal of human pluripotent stem cells by simulated microgravity. NPJ Microgravity 8, 22 (2022).

    Google Scholar 

  17. Chen, Z. et al. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci. Rep. 6, 30322 (2016).

    Google Scholar 

  18. Low, L. A. & Giulianotti, M. A. Tissue Chips in Space: modeling human diseases in microgravity. Pharm. Res. 37, 8 (2019).

    Google Scholar 

  19. Parafati, M. et al. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. NPJ Microgravity 9, 77 (2023).

    Google Scholar 

  20. Stenuit, H. ICE CUBES SERVICE: current applications and future vision. ESA Space for Inspiration conference, Noordwijk, The Netherlands, 2024. https://bsgn.esa.int/wp-content/uploads/2024/02/03-ICE-CUBES-Hilde-Stenuit.pdf (accessed 15 Nov 2025).

  21. Pietsch, J. et al. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the SpaceX CRS-8 ISS space mission—The SPHEROIDS project. Biomaterials 124, 126–56 (2017).

    Google Scholar 

  22. Granata, T., Rattenbacher, B. & John, G. Micro-bioreactors in space: case study of a Yeast (Saccharomyces cerevisiae) bioreactor with a non-invasive monitoring method. Front. Space Technol. 2, https://doi.org/10.3389/frspt.2021.773814 (2022).

  23. Demontis, G. C. et al. Human pathophysiological adaptations to the space environment. Front. Physiol. 8, 547 (2017).

    Google Scholar 

  24. Thirsk, R., Kuipers, A., Mukai, C. & Williams, D. The space-flight environment: the International Space Station and beyond. CMAJ 180, 1216–20 (2009).

    Google Scholar 

  25. Gesztesi, J., Broddrick, J. T., Lannin, T. & Lee, J. A. The chemical neighborhood of cells in a diffusion-limited system. Front. Microbiol. 14, 1155726 (2023).

    Google Scholar 

  26. Claassen, D. E. & Spooner, B. S. Impact of altered gravity on aspects of cell biology. Int. Rev. Cytol. 156, 301–73 (1994).

    Google Scholar 

  27. Sahana, J. et al. Alterations of growth and focal adhesion molecules in human breast cancer cells exposed to the random positioning machine. Front. Cell Dev. Biol. 9, 672098 (2021).

    Google Scholar 

  28. Thompson, M. et al. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in mesenchymal stem cells subjected to simulated microgravity. NPJ Microgravity 6, 35 (2020).

    Google Scholar 

  29. Meyers, V. E., Zayzafoon, M., Douglas, J. T. & McDonald, J. M. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J. Bone Min. Res. 20, 1858–66 (2005).

    Google Scholar 

  30. Blaber, E. A. et al. Microgravity reduces the differentiation and regenerative potential of embryonic stem cells. Stem Cells Dev. 24, 2605–21 (2015).

    Google Scholar 

  31. Chancellor, J. C. et al. Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity 4, 8 (2018).

    Google Scholar 

  32. Huff, J. L. et al. Galactic cosmic ray simulation at the NASA space radiation laboratory – Progress, challenges and recommendations on mixed-field effects. Life Sci. Space Res. 36, 90–104 (2023).

    Google Scholar 

  33. Durante, M. & Cucinotta, F. A. Physical basis of radiation protection in space travel. Rev. Mod. Phys. 83, 1245–81 (2011).

    Google Scholar 

  34. Furukawa, S. et al. Space radiation biology for living in space. Biomed. Res. Int. 2020, 4703286 (2020).

    Google Scholar 

  35. Luxton, J. J. et al. Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep. 33, 108435 (2020).

    Google Scholar 

  36. Garrett-Bakelman, F. E. et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364, https://doi.org/10.1126/science.aau8650 (2019).

  37. Tan, S. et al. Additive effects of simulated microgravity and ionizing radiation in cell death, induction of ROS and expression of RAC2 in human bronchial epithelial cells. NPJ Microgravity 6, 34 (2020).

    Google Scholar 

  38. Sishc, B. J. et al. Telomeres and telomerase in the radiation response: implications for instability, reprograming, and carcinogenesis. Front. Oncol. 5, 257 (2015).

    Google Scholar 

  39. Cucinotta, F. A., Kim, M.-H. Y. & Chappell, L. J. Space Radiation Cancer Risk Projections and Uncertainties—2010 (National Aeronautics and Space Administration, 2011).

  40. Zeitlin, C. et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340, 1080–4 (2013).

    Google Scholar 

  41. Grimm, D. et al. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Transl. Med. 9, 882–94 (2020).

    Google Scholar 

  42. Unsworth, B. R. & Lelkes, P. I. Growing tissues in microgravity. Nat. Med. 4, 901–7 (1998).

    Google Scholar 

  43. Hammond, T. G. & Hammond, J. M. Optimized suspension culture: the rotating-wall vessel. Am. J. Physiol. Ren. Physiol. 281, F12–25 (2001).

    Google Scholar 

  44. van den Nieuwenhof, D. W. A., Moroni, L., Chou, J. & Hinkelbein, J. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: a narrative review. NPJ Microgravity 10, 102 (2024).

    Google Scholar 

  45. Wuest, S. L., Stern, P., Casartelli, E. & Egli, M. Fluid Dynamics appearing during simulated microgravity using random positioning machines. PLoS ONE 12, e0170826 (2017).

    Google Scholar 

  46. Wang, Y., An, L., Jiang, Y. & Hang, H. Effects of simulated microgravity on embryonic stem cells. PLOS ONE 6, e29214 (2011).

    Google Scholar 

  47. Shaka, S. et al. Space microgravity alters neural stem cell division: implications for brain cancer research on Earth and in Space. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms232214320 (2022).

  48. Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013).

    Google Scholar 

  49. Lei, X. et al. Effect of microgravity on proliferation and differentiation of embryonic stem cells in an automated culturing system during the TZ-1 space mission. Cell Prolif. 51, e12466 (2018).

    Google Scholar 

  50. Basirun, C. et al. Microgravity x radiation: a space mechanobiology approach toward cardiovascular function and disease. Front. Cell Dev. Biol. 9, 750775 (2021).

    Google Scholar 

  51. Blaber, E., Sato, K. & Almeida, E. A. Stem cell health and tissue regeneration in microgravity. Stem Cells Dev. 23, 73–8 (2014).

    Google Scholar 

  52. Han, Y. et al. Effects of microgravity on neural crest stem cells. Front. Neurosci. 18, 1379076 (2024).

    Google Scholar 

  53. Cao, D. et al. Hematopoietic stem cells and lineage cells undergo dynamic alterations under microgravity and recovery conditions. FASEB J. 33, 6904–18 (2019).

    Google Scholar 

  54. Ye, Y. et al. Conserved mechanisms of self-renewal and pluripotency in mouse and human ESCs regulated by simulated microgravity using a 3D clinostat. Cell Death Discov. 10, 68 (2024).

    Google Scholar 

  55. Zhang, S. et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 41, 15–25 (2015).

    Google Scholar 

  56. Ma, C., Duan, X. & Lei, X. 3D cell culture model: from ground experiment to microgravity study. Front Bioeng. Biotechnol. 11, 1136583 (2023).

    Google Scholar 

  57. Wang, P. et al. Spaceflight/microgravity inhibits the proliferation of hematopoietic stem cells by decreasing Kit-Ras/cAMP-CREB pathway networks as evidenced by RNA-Seq assays. FASEB J. 33, 5903–13 (2019).

    Google Scholar 

  58. Lei, X. et al. Rotary suspension culture enhances mesendoderm differentiation of embryonic stem cells through modulation of Wnt/beta-catenin pathway. Stem Cell Rev. Rep. 10, 526–38 (2014).

    Google Scholar 

  59. Liu, L. et al. Simulated microgravity suppresses osteogenic differentiation of mesenchymal stem cells by inhibiting oxidative phosphorylation. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21249747 (2020).

  60. Dai, S. et al. Effect of simulated microgravity conditions of hindlimb unloading on mice hematopoietic and mesenchymal stromal cells. Cell Biol. Int. 44, 2243–52 (2020).

    Google Scholar 

  61. Ghani, F. & Zubair, A. C. Discoveries from human stem cell research in space that are relevant to advancing cellular therapies on Earth. NPJ Microgravity 10, 88 (2024).

    Google Scholar 

  62. Trudel, G. et al. Hemolysis contributes to anemia during long-duration space flight. Nat. Med. 28, 59–62 (2022).

    Google Scholar 

  63. Crucian, B. E. et al. Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front. Immunol. 9, 1437 (2018).

    Google Scholar 

  64. Corydon, T. J. et al. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci. Rep. 6, 20043 (2016).

    Google Scholar 

  65. Tan, X. et al. Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and AMPK pathways. Sci. Rep. 8, 3769 (2018).

    Google Scholar 

  66. Meyers, V. E. et al. Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J. Cell Biochem. 93, 697–707 (2004).

    Google Scholar 

  67. Zhang, C. et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J. 32, 4444–58 (2018).

    Google Scholar 

  68. Li, N. et al. Microgravity-induced alterations of inflammation-related mechanotransduction in endothelial cells on board SJ-10 satellite. Front. Physiol. 9, 1025 (2018).

    Google Scholar 

  69. Ratushnyy, A., Yakubets, D., Andreeva, E. & Buravkova, L. Simulated microgravity modulates the mesenchymal stromal cell response to inflammatory stimulation. Sci. Rep. 9, 9279 (2019).

    Google Scholar 

  70. Zhang, W. et al. Stem cells and exosome applications for cutaneous wound healing: from ground to microgravity environment. Stem Cell Rev. Rep. 19, 2094–108 (2023).

    Google Scholar 

  71. Campisi, M., Cannella, L. & Pavanello, S. Cosmic chronometers: is spaceflight a catalyst for biological ageing? Ageing Res. Rev. 95, 102227 (2024).

    Google Scholar 

  72. An, L. et al. The trends in global gene expression in mouse embryonic stem cells during spaceflight. Front. Genet. 10, 768 (2019).

    Google Scholar 

  73. Li, N., An, L. & Hang, H. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions. PLoS ONE 10, e0125236 (2015).

    Google Scholar 

  74. Handwerk, L. et al. Simulating space conditions evokes different DNA damage responses in immature and mature cells of the human hematopoietic system. Int. J. Mol. Sci. 24, 13761 (2023).

  75. Loktev, S. S. & Ogneva, I. V. DNA methylation of mouse testes, cardiac and lung tissue during long-term microgravity simulation. Sci. Rep. 9, 7974 (2019).

    Google Scholar 

  76. Kopp, S. et al. Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci. Rep. 6, 26887 (2016).

    Google Scholar 

  77. Grimm, D. et al. Recent studies of the effects of microgravity on cancer cells and the development of 3D multicellular cancer spheroids. Stem Cells Transl. Med. 14, szaf008 (2025).

  78. Kim, S. C. et al. Effects of simulated microgravity on colorectal cancer organoids growth and drug response. Sci. Rep. 14, 25526 (2024).

    Google Scholar 

  79. Wise, P. M. et al. Prolonged exposure to simulated microgravity changes release of small extracellular vesicle in breast cancer cells. Int. J. Mol. Sci. 23, 16095 (2022).

  80. Man, J., Graham, T., Squires-Donelly, G. & Laslett, A. L. The effects of microgravity on bone structure and function. NPJ Microgravity 8, 9 (2022).

    Google Scholar 

  81. Marotta, D. et al. Effects of microgravity on human iPSC-derived neural organoids on the International Space Station. Stem Cells Transl. Med. 13, 1186–97 (2024).

    Google Scholar 

  82. Yagi-Utsumi, M. et al. Microgravity-assisted exploration of the conformational space of amyloid beta affected by Tottori-type familial mutation D7N. ACS Chem. Neurosci. 16, 2682–90 (2025).

    Google Scholar 

  83. Ma, Z. et al. Mechanical unloading of engineered human meniscus models under simulated microgravity: a transcriptomic study. Sci. Data 9, 736 (2022).

    Google Scholar 

  84. Tan, F. et al. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target Ther. 9, 17 (2024).

    Google Scholar 

  85. Aleshcheva, G. et al. Scaffold-free tissue formation under real and simulated microgravity conditions. Basic Clin. Pharm. Toxicol. 119, 26–33 (2016).

    Google Scholar 

  86. Koaykul, C. et al. Maintenance of neurogenic differentiation potential in passaged bone marrow-derived human mesenchymal stem cells under simulated microgravity conditions. Stem Cells Dev. 28, 1552–61 (2019).

    Google Scholar 

  87. Li, F., Ye, Y., Lei, X. & Zhang, W. Effects of microgravity on early embryonic development and embryonic stem cell differentiation: phenotypic characterization and potential mechanisms. Front Cell Dev. Biol. 9, 797167 (2021).

    Google Scholar 

  88. Quynh Chi, H. N. et al. Simulated microgravity reduces proliferation and reorganizes the cytoskeleton of human umbilical cord mesenchymal stem cells. Physiol. Res. 69, 897–906 (2020).

    Google Scholar 

  89. Mozneb, M. et al. Surface tension enables induced pluripotent stem cell culture in commercially available hardware during spaceflight. NPJ Microgravity 10, 97 (2024).

    Google Scholar 

  90. Tannenbaum, S. E. & Reubinoff, B. E. Advances in hPSC expansion towards therapeutic entities: a review. Cell Prolif. 55, e13247 (2022).

    Google Scholar 

  91. Low, E. K. et al. Microgravity impairs DNA damage repair in human hematopoietic stem/progenitor cells and inhibits their differentiation into dendritic cells. Stem Cells Dev. 27, 1257–67 (2018).

    Google Scholar 

  92. Kiss, J. Z. et al. Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front. Plant Sci. 10, 1577 (2019).

    Google Scholar 

  93. NASA. Space Manufacturing Technology Report (NASA Technical Publication, 2023).

  94. European Space Agency. Space for Healthcare: Trends and Opportunities. ESA Commercialisation Gateway—Mini Report (European Space Agency, 2023).

  95. Potomac Institute for Policy Studies. International Space Station Commercialization Study. Report No. PIPS-97-1 (Potomac Institute for Policy Studies, Arlington, VA, 1997). https://potomacinstitute.org/images/Publications/PDF/isscfinalreport.pdf (accessed Nov 2025).

  96. Belli, M. & Tabocchini, M. A. Ionizing radiation-induced epigenetic modifications and their relevance to radiation protection. Int. J. Mol. Sci. 21, 5993 (2020).

  97. Rahimzadeh, V. et al. Ethically cleared to launch? Science 381, 1408–11 (2023).

    Google Scholar 

Download references