Superfood potential of Chlorella vulgaris: productivity and antioxidant boost under simulated moon and microgravity conditions

superfood-potential-of-chlorella-vulgaris:-productivity-and-antioxidant-boost-under-simulated-moon-and-microgravity-conditions
Superfood potential of Chlorella vulgaris: productivity and antioxidant boost under simulated moon and microgravity conditions

References

  1. Kovic, M. Risks of space colonization. Futures 126, 102638 (2021).

    Google Scholar 

  2. Caporale, A. G. et al. How to make the Lunar and Martian soils suitable for food production-Assessing the changes after manure addition and implications for plant growth. J. Environ. Manag. 325, 116455 (2023).

    Google Scholar 

  3. Kasiviswanathan, P., Swanner, E. D., Halverson, L. J. & Vijayapalani, P. Farming on Mars: treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS One 17, e0272209 (2022).

    Google Scholar 

  4. Eichler, A. et al. Challenging the agricultural viability of Martian regolith simulants. Icarus 354, 114022 (2021).

    Google Scholar 

  5. Häder, D. P. & Hemmersbach, R. Gravitaxis in Euglena. Adv. Exp. Med Biol. 979, 237–266 (2017).

    Google Scholar 

  6. Takahashi, K. et al. Gravity sensing in plant and animal cells. npj Microgravity 7, 1–10 (2021).

    Google Scholar 

  7. Acres, J. M., Youngapelian, M. J. & Nadeau, J. The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. npj Microgravity 7, 7 (2021).

  8. Medina, F. J., Manzano, A., Villacampa, A., Ciska, M. & Herranz, R. Understanding reduced gravity effects on early plant development before attempting life-support farming in the Moon and Mars. Front. Astron. Space Sci. 8, 729154 (2021).

    Google Scholar 

  9. Wuest, S. L., Stern, P., Casartelli, E. & Egli, M. Fluid Dynamics appearing during simulated microgravity using random positioning machines. PLoS One 12, e0170826 (2017).

    Google Scholar 

  10. Revellame, E. D. et al. Microalgae in bioregenerative life support systems for space applications. Algal Res 77, 103332 (2024).

    Google Scholar 

  11. Fais, G. et al. Wide range applications of spirulina: from Earth to space missions. Mar. Drugs 20, 299 (2022).

    Google Scholar 

  12. Miyajima, H. Self-Sustainable Smart City Design on the Red Planet. https://hdl.handle.net/2346/84928 (2019).

  13. Abney, M., Sanders, J. & Perry, J. A Discussion of Integrated Life Support and In Situ Resource Utilization Architectures for Mars Surface Missions. In 48th International Conference on Environmental Systems (48th International Conference on Environmental Systems, 2018).

  14. Miyajima, H. Life support system trade study for SpaceX Mars mission. In 47th International Conference on Environmental Systems (2017).

  15. Montague, M. et al. Therole of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12, 1135-42 https://doi.org/10.1089/ast.2012.0829 (2012).

  16. Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep space exploration. Cell 183, 1162 (2020).

    Google Scholar 

  17. Cao, G. et al. Process and kit to investigate microgravity effect on animal/vegetable cells under extraterrestrial cultivation conditions and cultivation process thereof to sustain manned space missions – Google Patents. (Google, 2021).

  18. Fais, G., Manca, A., Concas, A., Pantaleo, A. & Cao, G. A novel process to grow edible microalgae on Mars by exploiting in situ-available resources: experimental investigation. Acta Astronaut 201, 454–463 (2022).

    Google Scholar 

  19. Mills, W. R. & Pierson, D. L. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity. (NASA, 2000).

  20. Mohon, L. Artemis I. I. I.: NASA’s First Human Mission to the Lunar South Pole – NASA. https://www.nasa.gov/missions/artemis/artemis-iii/ (NASA, 2023).

  21. De Micco, V. et al. Plant and microbial science and technology as cornerstones to bioregenerative life support systems in space. npj Microgravity 9, 1–12 (2023).

    Google Scholar 

  22. Cao, G. et al. Recent advances on ISRU technologies and study of microgravity impact on blood cells for deep space exploration. Front. Space Technol. 4, 1146461 (2023).

    Google Scholar 

  23. Williamson, J., Wilson, J. P., Robinson, K. & Luong, H. Status of ISS water management and recovery. (NASA, 2023).

  24. ESA Annual Report 2019. www.esa.int (ESA, 2021).

  25. Wheeler, R. M. et al. Crop production for advanced life support systems-observations from the Kennedy Space Center Breadboard Project (2003).

  26. Fahrion, J., Mastroleo, F., Dussap, C. G. & Leys, N. Use of Photobioreactors in regenerative life support systems for human space exploration. Front Microbiol 12, 699525 (2021).

    Google Scholar 

  27. Maurício, T. et al. Differences and similarities in lipid composition, nutritional value, and bioactive potential of four edible chlorella vulgaris strains. Foods 12, 1625 (2023).

    Google Scholar 

  28. Dolganyuk, V. et al. Microalgae: a promising source of valuable bioproducts. Biomolecules 10, 1–24 (2020).

    Google Scholar 

  29. Verseux, C. et al. Sustainable life support on Mars: the potential roles of cyanobacteria. Int J. Astrobiol. 15, 65–92 (2019).

    Google Scholar 

  30. Niederwieser, T., Kociolek, P. & Klaus, D. A review of algal research in space. Acta Astronaut 146, 359–367 (2018).

    Google Scholar 

  31. Li, M. et al. Chlorella vulgaris culture as a regulator of CO2 in a bioregenerative life support system. Adv. Space Res. 52, 773–779 (2013).

    Google Scholar 

  32. Detrell, G. Chlorella vulgaris photobioreactor for oxygen and food production on a moon base—potential and challenges. Front. Astron. Space Sci. 8, 700579 (2021).

    Google Scholar 

  33. Ferreira, V. et al. Chlorella vulgaris as a model organism for microgravity cultivation in a cubesat. Iran. J. Energy Environ. 12, 18–22 (2021).

    Google Scholar 

  34. Niederwieser, T., Kociolek, P. & Klaus, D. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications. Life Sci. Space Res. 16, 8–17 (2018).

    Google Scholar 

  35. Torres-Tiji, Y., Fields, F. J. & Mayfield, S. P. Microalgae as a future food source. Biotechnol. Adv. 41, 107536 (2020).

    Google Scholar 

  36. Abreu, A. P., Martins, R. & Nunes, J. Emerging applications of chlorella sp. and spirulina (Arthrospira) sp. Bioengineering 10, 955 (2023).

  37. Sakarika, M. & Kornaros, M. Chlorella vulgaris as a green biofuel factory: comparison between biodiesel, biogas and combustible biomass production. Bioresour. Technol. 273, 237–243 (2019).

    Google Scholar 

  38. Mallick, N., Mandal, S., Singh, A. K., Bishai, M. & Dash, A. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J. Chem. Technol. Biotechnol. 87, 137–145 (2012).

    Google Scholar 

  39. Casula, M. et al. Cultivation and nutritional characteristics of Chlorella vulgaris cultivated using Martian regolith and synthetic urine. Life Sci. Space Res (Amst.) 42, 108–116 (2024).

    Google Scholar 

  40. Ellena, G. et al. Development and implementation of a simulated microgravity setup for edible cyanobacteria. npj Microgravity 10, 1–14 (2024).

    Google Scholar 

  41. Häder, D. On the Way to Mars—flagellated algae in bioregenerative life support systems under microgravity conditions. Front Plant Sci. 10, 498707 (2020).

    Google Scholar 

  42. Preu, P. & Braun, M. German SIMBOX on Chinese mission Shenzhou-8: Europe’s first bilateral cooperation utilizing China’s Shenzhou programme. Acta Astronaut 94, 584–591 (2014).

    Google Scholar 

  43. Popova, A. F. Comparative characteristic of mitochondria ultrastructural organization in Chlorella cells under altered gravity conditions. Adv. Space Res. 31, 2253–2259 (2003).

    Google Scholar 

  44. Li, G., Wang, G., Song, L. & Liu, Y. Lipid peroxidation in microalgae cells under simulated microgravity. Space Med. Eng. 15, 270–272 (2002).

  45. Li, G. B., Liu, Y. D., Wang, G. H. & Song, L. R. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity. Acta Astronaut 55, 953–957 (2004).

    Google Scholar 

  46. Hauslage, J. et al. Eu:CROPIS – “Euglena gracilis: combined regenerative organic-food production in space” – a space experiment testing biological life support systems under lunar and Martian gravity. Microgravity Sci. Technol. 30, 933–942 (2018).

    Google Scholar 

  47. Detrell, G., Verseux, C. & Trigo-Rodríguez, J. M. Chlorella vulgaris photobioreactor for oxygen and food production on a moon base-potential and challenges. 8, 700579 (2021).

  48. Santomartino, R. et al. Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat. Commun. 14, 1–11 (2023).

    Google Scholar 

  49. Mendes, A. R., Spínola, M. P., Lordelo, M. & Prates, J. A. M. Advances in bioprocess engineering for optimising chlorella vulgaris fermentation: biotechnological innovations and applications. Foods 13, 4154 (2024).

    Google Scholar 

  50. Wuest, S. L., Richard, S., Kopp, S., Grimm, D. & Egli, M. Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. Biomed. Res. Int. 2015, 971474 (2015).

    Google Scholar 

  51. Borst, A. G. & Van Loon, J. J. W. A. Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009).

    Google Scholar 

  52. Shekh, A., Sharma, A., Schenk, P. M., Kumar, G. & Mudliar, S. Microalgae cultivation: photobioreactors, CO2 utilization, and value-added products of industrial importance. J. Chem. Technol. Biotechnol. 97, 1064–1085 (2022).

    Google Scholar 

  53. Popova, A. F. Structural featuses of Chlorella cells cultured for one year under the conditions of space flight. Tsitologiya i Genetika 31, 3–9 (1997).

    Google Scholar 

  54. Popova, A. & Shniukova, E. Ultrastructure of chloroplasts and activity of amylases in Chlorella cells during space flight. Tsitol Genet. 29, 41–45 (1995).

    Google Scholar 

  55. Popova, A. F., Kordyum, E. L., Shnyukova, E. I., & Sytnik, K. M. Plastid ultrastructure, fractional composition and activity ofamylases in Chlorella cells in microgravity. Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology, 2, P159-160 (1995).

  56. Popova, A. F. et al. Ultrastructural and growth indices of Chlorella culture in multicomponent aquatic systems under space flight conditions. Adv. Space Res. 9, 79–82 (1989).

    Google Scholar 

  57. Wu, Q. et al. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch. Toxicol. 90, 1817–1840 (2016).

    Google Scholar 

  58. Rezayian, M., Niknam, V. & Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 6, 1309–1313 (2019).

    Google Scholar 

  59. Wang, C. A., Onyeaka, H., Miri, T. & Soltani, F. Chlorella vulgaris as a food substitute: applications and benefits in the food industry. J. Food Sci. 89, 8231 (2024).

    Google Scholar 

  60. Martemucci, G. et al. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2, 48–78 (2022).

    Google Scholar 

  61. Pérez-gálvez, A., Viera, I. & Roca, M. Carotenoids and chlorophylls as. Antioxid. Antioxid. 9, 505 (2020).

    Google Scholar 

  62. Grune, T. et al. β-carotene is an important vitamin A source for humans. J. Nutr. 140, 2268S–2285S (2010).

    Google Scholar 

  63. Dixit, J., Jagtap, S., Kulkarni, G. & Vidyasagar, P. B. Effects of Simulated Microgravity On Growth, Physiology And Photosynthetic Machinery In Synechocystis sp. PCC 6803. cosp 42, F4.4-4-18 (2018).

  64. Begum, H., Yusoff, F. M. D., Banerjee, S., Khatoon, H. & Shariff, M. Availability and utilization of pigments from microalgae. Crit. Rev. Food Sci. Nutr. 56, 2209–2222 (2016).

    Google Scholar 

  65. Chen, B. et al. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresour. Technol. 244, 1198–1206 (2017).

    Google Scholar 

  66. Calabrese, E. J. et al. Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol. Appl Pharm. 222, 122–128 (2007).

    Google Scholar 

  67. Guardini, Z. et al. High carotenoid mutants of Chlorella vulgaris show enhanced biomass yield under high irradiance. Plants 10, 911 (2021).

    Google Scholar 

  68. Fais, G. et al. Cultivation of chroococcidiopsis thermalis using available in situ resources to sustain. Life Mars. Life 14, 251 (2024).

    Google Scholar 

  69. Casula, M. et al. Impact of low-dose X-ray radiation on the lipidome of Chlorella vulgaris. Algal Res. 84, 103783 (2024).

    Google Scholar 

  70. Zuluaga, M., Gueguen, V., Pavon-Djavid, G. & Letourneur, D. Carotenoids from microalgae to block oxidative stress. Bioimpacts 7, 1 (2017).

    Google Scholar 

  71. Morales, M., Aflalo, C. & Bernard, O. Microalgal lipids: A review of lipids potential and quantification for 95 phytoplanktonspecies. Biomass and Bioenergy 150, 106108 https://doi.org/10.1016/j.biombioe.2021.106108 (2021).

  72. Ugya, A. Y., Imam, T. S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chem. Ecol. 36, 174–193 (2020).

    Google Scholar 

  73. Dakkumadugula, A. et al. Space nutrition and the biochemical changes caused in Astronauts Health due to space flight: a review. Food Chem. X 20, 100875 (2023).

    Google Scholar 

  74. Goiris, K. et al. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl Phycol. 24, 1477–1486 (2012).

    Google Scholar 

  75. Xie, T., Xia, Y., Zeng, Y., Li, X. & Zhang, Y. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga chlorella vulgaris: over-compensation strategy. Bioresour. Technol. 233, 247–255 (2017).

    Google Scholar 

  76. Ratomski, P. & Hawrot-paw, M. Influence of nutrient-stress conditions on chlorella vulgaris biomass production and lipid content. Catalysts 11, 573 (2021).

    Google Scholar 

  77. DDa Costa, E., Silva, J., Mendonca, S. H., Abreu, M. H. & Domingues, M. R. Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Mar. Drugs 14, 101 https://doi.org/10.3390/md14050101 (2016).

  78. Widzgowski, J. et al. High light induces species specific changes in the membrane lipid composition of Chlorella. Biochem. J. 477, 2543–2559 (2020).

    Google Scholar 

  79. Tang, H., Rising, H. H., Majji, M. & Brown, R. D. Long-term space nutrition: a scoping review. Nutrients 14, 194 (2021).

    Google Scholar 

  80. Smith, S. M., Davis-Street, J., Neasbitt, L., Zwart Illustrations, S. R. & Zambetti, M. Space nutrition. (NASA, 2012).

  81. Rittenschober. FAO/INFOODS Guidelines Guidelines for Converting Units, Denominators and Expressions Version 1.0. (FAO, 2012).

  82. NASA. Nutrition Requirements, Standards, and Operating Bands for Exploration Missions. (NASA, 2005).

  83. Sato, N. Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J. Plant Res. 117, 495–505 (2004).

    Google Scholar 

  84. Nakajima, Y. et al. Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus. J. Biol. Chem. 293, 14786–14797 (2018).

    Google Scholar 

  85. Wada, H. & Murata, N. Membrane Lipids in Cyanobacteria. Lipids in Photosynthesis: Structure, Function and Genetics 65–81 https://doi.org/10.1007/0-306-48087-5_4 (1998).

  86. He, M., Qin, C. X., Wang, X. & Ding, N. Z. Plant unsaturated fatty acids: biosynthesis and regulation. Front. Plant Sci. 11, 511331 (2020).

    Google Scholar 

  87. Marangoni, F. et al. Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects. Atherosclerosis 292, 90–98 (2020).

    Google Scholar 

  88. Borowitzka, M. A. Algal physiology and large-scale outdoor cultures of microalgae. Physiology of Microalgae 601–652 https://doi.org/10.1007/978-3-319-24945-2_23 (2016).

  89. Mimouni, V., Couzinet-Mossion, A., Ulmann, L. & Wielgosz-Collin, G. Lipids from microalgae. Microalgae in Health and Disease Prevention 109–131 https://doi.org/10.1016/B978-0-12-811405-6.00005-0 (2018).

  90. Sarmistha, N. Effect of simulated microgravity on growth, morphological and biochemical properties of chlorella pyrenoidosa. (The University of Houston Clear Lake, 2001).

  91. Kong, F., Romero, I. T., Warakanont, J. & Li-Beisson, Y. Lipid catabolism in microalgae. N. Phytol. 218, 1340–1348 (2018).

    Google Scholar 

  92. Cecchin, M. et al. CO2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species. Plant Cell Environ. 44, 2987–3001 (2021).

    Google Scholar 

  93. Roessler, P. G. Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol. 26, 393–399 (1990).

    Google Scholar 

  94. Goncalves, E., Johnson, J. & Rathinasabapathi, B. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29 on JSTOR. Planta 238, 895–906 (2013).

    Google Scholar 

  95. Klok, A. J., Martens, D. E., Wijffels, R. H. & Lamers, P. P. Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour. Technol. 134, 233–243 (2013).

    Google Scholar 

  96. Holub, B. J. The nutritional significance, metabolism, and function of myo-inositol and phosphatidylinositol in health and disease. Adv. Nutr. Res. 4, 107–141 (1982).

    Google Scholar 

  97. Hernández, M. L., Jiménez-López, J., Cejudo, F. J. & Pérez-Ruiz, J. M. 2-Cys peroxiredoxins contribute to thylakoid lipid unsaturation by affecting ω-3 fatty acid desaturase 8. Plant Physiol. 195, 1521 (2024).

    Google Scholar 

  98. Ge, S. et al. Dynamic and adaptive membrane lipid remodeling in leaves of sorghum under salt stress. Crop J. 10, 1557–1569 (2022).

    Google Scholar 

  99. Smith, S. M., Zwart, S. R., Douglas, G. L. & Heer, M. Human adaptation to spaceflight: the role of food and nutrition. National Aeronautics and Space Administration vol. 135 (NASA, 2014).

  100. Häder, D. P., Braun, M., Grimm, D. & Hemmersbach, R. Gravireceptors in eukaryotes—a comparison of case studies on the cellular level. npj Microgravity 3, 1–8 (2017).

  101. van Loon, J. J. W. A. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007).

    Google Scholar 

  102. Hasenstein, K. H. & van Loon, J. J. W. A. Clinostats and other rotating systems-design, function, and limitations. Generation and Applications of Extra-Terrestrial Environments on Earth 147–156 https://doi.org/10.1201/9781003338277-17/CLINOSTATS-ROTATING-SYSTEMS (2015).

  103. Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1 (2013).

    Google Scholar 

  104. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    Google Scholar 

  105. Chen, Y. & Vaidyanathan, S. Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae. Anal. Chim. Acta 776, 31–40 (2013).

    Google Scholar 

  106. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Google Scholar 

  107. Lowry, O., Rosebrough, N., Farr, A. & Randall, R. Protein measurement with the Folin phenol reagent – PubMed. J. Biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  108. Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89, 27–41 (2006).

    Google Scholar 

  109. Wellburn, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313 (1994).

    Google Scholar 

  110. Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).

    Google Scholar 

  111. Brand-Williams, W., Cuvelier, M. E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol. 28, 25–30 (1995).

    Google Scholar 

  112. Folch, J., Lees, M. & Sloane stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    Google Scholar 

  113. Sud, M. et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44, D463–D470 (2016).

    Google Scholar 

  114. Li, Y. et al. Simultaneous structural identification of diacylglyceryl-N-trimethylhomoserine (DGTS) and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) in microalgae using dual Li + /H+ adduct ion mode by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 31, 457–468 (2017).

    Google Scholar 

  115. Murphy, R. C. Tandem Mass Spectrometry of Lipids. Tandem Mass Spectrometry of Lipids (Royal Society of Chemistry, https://doi.org/10.1039/9781782626350 (2014).

  116. Han, X. Lipidomics: Comprehensive Mass Spectrometry of Lipids. Lipidomics: Comprehensive Mass Spectrometry of Lipids. https://doi.org/10.1002/9781119085263 (2016).

  117. Granafei, S., Losito, I., Palmisano, F. & Cataldi, T. R. I. Unambiguous regiochemical assignment of sulfoquinovosyl mono- and diacylglycerols in parsley and spinach leaves by liquid chromatography/electrospray ionization sequential mass spectrometry assisted by regioselective enzymatic hydrolysis. Rapid Commun. Mass Spectrom. 31, 1499–1509 (2017).

    Google Scholar 

  118. Hong, M. Y. et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis 23, 1919–1926 (2002).

    Google Scholar 

  119. Narayanan, S., Prasad, P. V. V. & Welti, R. Alterations in wheat pollen lipidome during high day and night temperature stress. Plant Cell Environ. 41, 1749–1761 (2018).

    Google Scholar 

  120. Bychkov, A., Reshetnikova, P., Bychkova, E., Podgorbunskikh, E. & Koptev, V. The current state and future trends of space nutrition from a perspective of astronauts’ physiology. Int J. Gastron Food Sci. 24, 100324 (2021).

    Google Scholar 

Download references