Sustainable carbon quantum dots synthesized from yeast β-glucan as a promising nanomaterial for biological applications

sustainable-carbon-quantum-dots-synthesized-from-yeast-β-glucan-as-a-promising-nanomaterial-for-biological-applications
Sustainable carbon quantum dots synthesized from yeast β-glucan as a promising nanomaterial for biological applications

References

  1. Huang, C., Dong, H., Su, Y., Wu, Y., Narron, R., & Yong, Q. Synthesis of carbon quantum Dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials 9, 387 (2019). 

    Google Scholar 

  2. Gomase, A., Sangale, S., Mundhe, A., Gadakh, P. & Nikam, V. Quantum dots: method of Preparation and biological application. J. Drug Deliv. Ther. 9, 670–672 (2019).

    Google Scholar 

  3. Kalifathullah, S. K. & Sundaramurthy, D. Exploration of biological activities of green N-Carbon quantum Dots and photocatalytic studies of ZnO@ N-CQDs. Emergent Mater. 7, 2755–2766 (2024).

    Google Scholar 

  4. Sharma, A. & Das, J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J. Nanobiotechnol. 17, 92 (2019).

    Google Scholar 

  5. Du, Y. & Guo, S. Chemically doped fluorescent carbon and graphene quantum Dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8, 2532–2543 (2016).

    Google Scholar 

  6. Hoan, B. T., Tam, P. D. & Pham, V. H. Green synthesis of highly luminescent carbon quantum dots from lemon juice. J. Nanotechnol. 2019, 2852816 (2019).

  7. Yadav, P. K., Chandra, S., Kumar, V., Kumar, D. & Hasan, S. H. Carbon quantum dots: synthesis, structure, properties, and catalytic applications for organic synthesis. Catalysts 13, 422 (2023).

    Google Scholar 

  8. Nair, A., Haponiuk, J. T., Thomas, S. & Gopi, S. Natural carbon-based quantum Dots and their applications in drug delivery: A review. Biomed. Pharmacother. 132, 110834 (2020).

    Google Scholar 

  9. Dhanush, C., Aravindh, S., Jesreena, J. S., Nagadharshini, R., Jano, N., Almeer, R., & KP Velu, S. Biomimetic synthesis of carbon Dots from mimosa pudica leaves for enhanced bioimaging. Waste Biomass Valoriz. 16, 713–721 (2025).

    Google Scholar 

  10. Pandiyan, S., Arumugam, L., Srirengan, S.P., Pitchan, R., Sevugan, P., Kannan, K., Pitchan, G., Hegde, T.A. & Gandhirajan, V. Biocompatible carbon quantum Dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS Omega. 5, 30363–30372 (2020).

    Google Scholar 

  11. Wang, X., Wu, T., Yang, Y., Zhou, L., Wang, S., Liu, J., Zhao, Y., Zhang, M., Zhao, Y., Qu, H. & Kong, H. Ultrasmall and highly biocompatible carbon Dots derived from natural plant with amelioration against acute kidney injury. J. Nanobiotechnol. 21, 63 (2023).

    Google Scholar 

  12. Tian, X., Zeng, A., Liu, Z., Zheng, C., Wei, Y., Yang, P., Zhang, M., Yang, F. & Xie, F.Carbon quantum dots: in vitro and in vivo studies on biocompatibility and biointeractions for optical imaging. Int. J. Nanomedicine 15, 6519–6529 (2020).

  13. Latif, Z., Shahid, K., Anwer, H., Shahid, R., Ali, M., Lee, K. H., & Alshareef, M. Carbon quantum Dots (CQDs) modified polymers: a mini review of non-optical applications. Nanoscale 16, 2265–2285 (2024).

  14. Gowtham, P., Girigoswami, K., Prabhu, A. D., Pallavi, P., Thirumalai, A., Harini, K., & Girigoswami, A. Hydrogels of alginate derivative‐encased nanodots featuring carbon‐coated manganese ferrite cores with gold shells to offer antiangiogenesis with multimodal imaging‐based theranostics. Adv. Therapeut. 7, 2400054 (2024).

  15. González, M. & Romero, M. P. Surface-Modified carbon Dots for cancer therapy: integrating diagnostic and therapeutic applications. Int. J. Nanomedicine 20, 7715–7741 (2025).

  16. Molaei, M. J. Carbon quantum Dots and their biomedical and therapeutic applications: a review. RSC Adv. 9, 6460–6481 (2019).

    Google Scholar 

  17. Noel, K. J., Umashankar, M. S. & Narayanasamy, D. & Umashankar Sr, M. S. Exploring research on the drug loading capacity of quantum Dots. Cureus 16, e67869 (2024).

  18. Kirubanithy, K. & Santhanam, A. A pH-responsive nanocarrier of peanut shell carbon quantum Dots as a promising delivery of doxorubicin for cancer therapy. Sci. Rep. 15, 33885 (2025).

    Google Scholar 

  19. Fatima, I., Rahdar, A., Sargazi, S., Barani, M., Hassanisaadi, M., & Thakur, V. K. Quantum dots: synthesis, antibody conjugation, and HER2-receptor targeting for breast cancer therapy. J. Funct. Biomater. 12, 75 (2021).

    Google Scholar 

  20. Kazemi, K., Amini, A., Omidifar, N., Aghabdollahian, S., Raee, M. J., & Gholami, A.  Empowering rapid diagnosis and treatment of glioblastoma with biofunctionalized carbon quantum dots: a review. Cancer Nanotechnol. 16, 13 (2025).

    Google Scholar 

  21. Lee, C., Verma, R., Byun, S., Jeun, E.J., Kim, G.C., Lee, S., Kang, H.J., Kim, C.J., Sharma, G., Lahiri, A. & Paul, S. Structural specificities of cell surface β-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities. Nat. Commun. 12, 3611 (2021).

    Google Scholar 

  22. Liu, Y., Wu, Q., Wu, X., Algharib, S.A., Gong, F., Hu, J., Luo, W., Zhou, M., Pan, Y., Yan, Y. & Wang, Y. Structure, preparation, modification, and bioactivities of β-glucan and Mannan from yeast cell wall: A review. Int. J. Biol. Macromol. 173, 445–456 (2021).

    Google Scholar 

  23. Jofre, F. M., Queiroz, S. D. S., Sanchez, D. A., Arruda, P. V., Santos, J. C. D., & Felipe, M. D. G. D. A. Biotechnological potential of yeast cell wall: an overview. Biotechnol. Progr. 40, e3491 (2024).

  24. Yousefi, L. Yeast mannan: Structure, extraction and bioactivity. Appl. Food Biotechnol. 10, 155–164 (2023).

    Google Scholar 

  25. Gan, J., Chen, L., Chen, Z., Zhang, J., Yu, W., Huang, C., Wu, Y. & Zhang, K. Lignocellulosic biomass-based carbon dots: synthesis processes, properties, and applications. Small 19, 2304066 (2023).

    Google Scholar 

  26. Yuan, H., Lan, P., He, Y., Li, C. & Ma, X. Effect of the modifications on the physicochemical and biological properties of β-glucan—A critical review. Molecules 25, 57 (2019).

    Google Scholar 

  27. Chioru, A. & Chirsanova, A. β-Glucans: Characterization, extraction Methods, and valorization. Food Nutr. Sci. 14, 963–983 (2023).

    Google Scholar 

  28. Su, Y., Chen, L., Yang, F. & Cheung, P. C. Beta-d-glucan-based drug delivery system and its potential application in targeting tumor associated macrophages. Carbohydr. Polym. 253, 117258 (2021).

    Google Scholar 

  29. Yadav, R., Lahariya, V. & Bansal, V. Evaluation of thermal behavior and properties of carbon Dots prepared by green synthesis. ECS Trans. 107, 14445 (2022).

    Google Scholar 

  30. Dhanush, C. & Sethuraman, M. Independent hydrothermal synthesis of the undoped, nitrogen, Boron and sulphur doped biogenic carbon nanodots and their potential application in the catalytic chemo-reduction of Alizarine yellow R Azo dye. Spectrochim. Acta A Mol. Biomol. Spectrosc. 260, 119920 (2021).

    Google Scholar 

  31. Dua, S., Kumar, P., Pani, B., Kaur, A., Khanna, M., & Bhatt, G. Stability of carbon quantum dots: a critical review. RSC Adv. 13, 13845–13861 (2023).

    Google Scholar 

  32. Kumar, A., Kumar, I. & Gathania, A. K. Synthesis, characterization and potential sensing application of carbon Dots synthesized via the hydrothermal treatment of cow milk. Sci. Rep. 12, 22495 (2022).

    Google Scholar 

  33. Azam, N., Ali, N., Javaid Khan, T. & M. & Carbon quantum Dots for biomedical applications: review and analysis. Front. Mater. 8, 700403 (2021).

    Google Scholar 

  34. Dhanush, C., Aravind, M. K., Ashokkumar, B. & Sethuraman, M. G. Synthesis of blue emissive fluorescent nitrogen doped carbon Dots from Annona squamosa fruit extract and their diverse applications in the field of catalysis and bio-imaging. J. Photochem. Photobiol. A: Chem432, 114097 (2022).

    Google Scholar 

  35. Mirseyed, P. S., Arjmand, S., Rahmandoust, M., Kheirabadi, S. & Anbarteh, R. Green synthesis of yeast cell wall-derived carbon quantum Dots with multiple biological activities. Heliyon 10, e29440 (2024).

  36. Asare, S. O. Optimized Acid/base Extraction and Structural Characterization of β-glucan from Saccharomyces Cerevisiae (East Tennessee State University, 2015).

  37. Bian, Z., Gomez, E., Gruebele, M., Levine, B. G., Link, S., Mehmood, A., & Nie, S. Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure. Chem. Sci. 16, 4195–4212 (2025).

    Google Scholar 

  38. Tauc, J., Grigorovici, R. & Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b). 15, 627–637 (1966).

    Google Scholar 

  39. Jumardin, J., Maddu, A., Santoso, K. & Isnaeni, I. Synthesis of carbon dots (CDS) and determination of optical gap energy with Tauc plot method. Jambura Phys. J. 3, 73–86 (2021).

    Google Scholar 

  40. Swebocki, T., Barras, A. & Kocot, A. M. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assays Using Broth Microdilution Method. (2023).

  41. Benzie, I. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239, 70–76 (1996).

    Google Scholar 

  42. Alharthi, A.H., Al-Shehri, S.H.A., Albarqi, M.A.A., Alshehri, M.S., Alshehri, A.M., Amer, A.M., Alshehri, M.H., Alshehri, A.H.S., Alshehri, S.H.S. & Alassiry, A.M.A. Laboratory markers of inflammation: CRP and ESR in clinical practice. J. Int. Crisis Risk Communication Res. 7, 2376 (2024).

    Google Scholar 

  43. Boruah, A. & Saikia, B. K. Chemical Fabrication of Efficient Blue-luminescent Carbon Quantum Dots from Coal Washery Rejects (Waste) for Detection of Hg2 + and Cr6 + Ions in Water. ChemistrySelect 7, e202104567 (2022).

  44. Dhanush, C. & Sethuraman, M. Influence of phyto-derived nitrogen doped carbon Dots from the seeds of Azadirachta indica on the NaBH4 reduction of Safranin-O dye. Diam. Relat. Mater. 108, 107984 (2020).

    Google Scholar 

  45. Shukla, G., Gaurav, S. S., Rani, V., Singh, A., Rani, P., Verma, P., & Kumar, B. Evaluation of larvicidal effect of mycogenic silver nanoparticles against white Grubs (Holotrichia sp). J. Adv. Sci. Res. 11, 296–304 (2020).

    Google Scholar 

  46. Wang, J., Zhang, X., & Li, Y. Recent advances in carbon quantum dots derived from natural polymers: Synthesis, properties, and applications. J. Carbon Res. 10, 45–67 (2024).

  47. Emam, H. E. Clustering of photoluminescent carbon quantum Dots using biopolymers for biomedical applications. Biocatal. Agric. Biotechnol. 42, 102382 (2022).

    Google Scholar 

  48. Thodikayil, A. T., Sharma, S. & Saha, S. Engineering carbohydrate-based particles for biomedical applications: strategies to construct and modify. ACS Appl. Bio Mater. 4, 2907–2940 (2021).

    Google Scholar 

  49. Mozdbar, A., Nouralishahi, A., Fatemi, S. & Mirakhori, G. in AIP Conference Proceedings. (AIP Publishing).

  50. Wu, Y., Li, C., van der Mei, H. C., Busscher, H. J. & Ren, Y. Carbon quantum Dots derived from different carbon sources for antibacterial applications. Antibiotics 10, 623 (2021).

    Google Scholar 

  51. Kong, J., Wei, Y., Zhou, F., Shi, L., Zhao, S., Wan, M., & Zhang, X. Carbon quantum dots: properties, preparation, and applications. Molecules 29, 2002 (2024)

  52. Kalifathullah, S. K., Alaguvel, S. & Sundaramurthy, D. Efficient synthesis of green nitrogen-doped carbon Dots as a versatile nanoprobe for antibacterial, cytotoxic, in-vitro imaging, and anti-counterfeit applications. Inorg. Chem. Commun. 178, 114473 (2025).

    Google Scholar 

  53. Hill, S. & Galan, M. C. Fluorescent carbon Dots from mono-and polysaccharides: synthesis, properties and applications. Beilstein J. Org. Chem. 13, 675–693 (2017).

    Google Scholar 

  54. Xu, X., Wang, X., Du, W., Liu, S., Qiao, Z., & Zhou, Y. Hydrothermal synthesis of biomass-derived cqds: advances and applications. Nanatechnol. Reviews 14, 20250184 (2025).

    Google Scholar 

  55. Lesage, G. & Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343 (2006).

    Google Scholar 

  56. Sadeghi, A., Purabdolah, H., Hajinia, F., Shahryari, S., Taheri, F., Ebrahimi, M., Assadpour, E. & Jafari, S.M. Emerging functionalities of yeast cell-wall components; the value-added food-grade pre-and post-biotics. Appl. Food Res. 5, 101072 (2025).

  57. Shokri, H., Asadi, F. & Khosravi, A. R. Isolation of β-glucan from the cell wall of Saccharomyces cerevisiae. Nat. Prod. Res. 22, 414–421 (2008).

    Google Scholar 

  58. Aimanianda, V., Clavaud, C., Simenel, C., Fontaine, T., Delepierre, M., & Latge, J. P. Cell wall β-(1, 6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J. Biol. Chem. 284, 13401–13412 (2009).

    Google Scholar 

  59. Bhagat, P., Patil, K., Bodas, D. & Paknikar, K. Hydrothermal synthesis and characterization of carbon nanospheres: a mechanistic insight. RSC Adv. 5, 59491–59494 (2015).

    Google Scholar 

  60. Huang, J., Chen, Y., Leng, K., Liu, S., Chen, Z., Chen, L., Wu, D. & Fu, R. Morphology-persistent carbonization of self-assembled block copolymers for multifunctional coupled two-dimensional porous carbon hybrids. Chem. Mater. 32, 8971–8980 (2020).

    Google Scholar 

  61. Singh, R. P. & Bhardwaj, A. β-glucans: A potential source for maintaining gut microbiota and the immune system. Front. Nutr. 10, 1143682 (2023).

    Google Scholar 

  62. Zhong, X., Wang, G., Li, F., Fang, S., Zhou, S., Ishiwata, A., Tonevitsky, A.G., Shkurnikov, M., Cai, H. & Ding, F. Immunomodulatory effect and biological significance of β-glucans. Pharmaceutics 15, 1615 (2023)

  63. Ul Ashraf, Z., Shah, A., Gani, A., Gani, A., Masoodi, F. A., & Noor, N. Nanoreduction as a technology to exploit β-Glucan from cereal and fungal sources for enhancing its nutraceutical potential. Carbohydr. Polym. 258, 117664 (2021).

    Google Scholar 

  64. Gautério, G. V., Silvério, S. I. D. C., Egea, M. B. & Lemes, A. C. β-glucan from brewer’s spent yeast as a techno-functional food ingredient. Front. Food Sci. Technol. 2, 1074505 (2022).

    Google Scholar 

  65. Schauss, A. G., Glavits, R., Endres, J., Jensen, G. S. & Clewell, A. Safety evaluation of a proprietary food-grade, dried fermentate Preparation of Saccharomyces cerevisiae. Int. J. Toxicol. 31, 34–45 (2012).

    Google Scholar 

  66. Sheshmani, S., Mardali, M., Shokrollahzadeh, S., Bide, Y. & Tarlani, R. Synthesis, optical, and photocatalytic properties of cellulose-derived carbon quantum Dots. Sci. Rep. 15, 19027 (2025).

    Google Scholar 

  67. Liang, S., Wang, M., Gao, W. & Zhao, X. Effects of elemental doping, acid treatment, and passivation on the fluorescence intensity and emission behavior of yellow fluorescence carbon Dots. Opt. Mater. 128, 112471 (2022).

    Google Scholar 

  68. Chandra, S., Laha, D., Pramanik, A., Ray Chowdhuri, A., Karmakar, P., & Sahu, S. K. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon Dots for the detection of Fe3 + ions in cancer cells. Luminescence 31, 81–87 (2016).

    Google Scholar 

  69. Ding, H., Li, X. H., Chen, X. B., Wei, J. S., Li, X. B., & Xiong, H. M. Surface States of carbon Dots and their influences on luminescence. Journal Appl. Physics. 127, 231101 (2020).

  70. Li, X., Zhang, S., Kulinich, S. A., Liu, Y. & Zeng, H. Engineering surface States of carbon Dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2 + detection. Sci. Rep. 4, 4976 (2014).

    Google Scholar 

  71. Rahmandoust, M., Sharifikolouei, E., Lassnig, A. & Zoghi, S. Study of the durability and sustainability of fluorescent nanosensors based on cellulose nanocomposites incorporated with various carbon Dots. Cellulose 30, 1031–1044 (2023).

    Google Scholar 

  72. Taheri, Z., Mirjalili, M. H., Shahsavarani, H., Ghassempour, A. & Rahmandoust, M. Single-step synthesized carbon quantum Dots from centella Asiatica hairy roots: Photoluminescent, biocompatibility, antibacterial and anticancer activity. Ind. Crops Prod. 229, 120999 (2025).

    Google Scholar 

  73. Kumar, P., Dua, S., Kaur, R., Kumar, M. & Bhatt, G. A review on advancements in carbon quantum Dots and their application in photovoltaics. RSC Adv. 12, 4714–4759 (2022).

    Google Scholar 

  74. Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y., & Bai, Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim. Acta. 186, 583 (2019).

    Google Scholar 

  75. Siddique, A. B., Pramanick, A. K., Chatterjee, S. & Ray, M. Amorphous carbon Dots and their remarkable ability to detect 2, 4, 6-trinitrophenol. Sci. Rep. 8, 9770 (2018).

    Google Scholar 

  76. Thangaraj, B., Solomon, P. R., Chuangchote, S., Wongyao, N. & Surareungchai, W. Biomass-derived carbon quantum dots–A review. Part 1: Preparation and characterization. ChemBioEng Rev. 8, 265–301 (2021).

    Google Scholar 

  77. Selvaraju, N., Ganesh, P. S., Palrasu, V., Venugopal, G. & Mariappan, V. Evaluation of antimicrobial and antibiofilm activity of citrus medica fruit juice based carbon Dots against Pseudomonas aeruginosa. ACS Omega7, 36227–36234 (2022).

    Google Scholar 

  78. Chai, S., Zhou, L., Pei, S., Zhu, Z. & Chen, B. P-doped carbon quantum Dots with antibacterial activity. Micromachines 12, 1116 (2021).

    Google Scholar 

  79. Chai, S., Zhou, L., Chi, Y., Chen, L., Pei, S., & Chen, B. Enhanced antibacterial activity with increasing P doping ratio in CQDs. RSC Adv. 12, 27709–27715 (2022).

    Google Scholar 

  80. Li, P., Sun, L., Xue, S., Qu, D., An, L., Wang, X., & Sun, Z. Recent advances of carbon dots as new antimicrobial agents. SmartMat. 3, 226–248 (2022).

  81. Sayyad, U. S., Waghmare, S. & Mondal, S. A proton-coupled electron transfer process from functionalized carbon Dots to molecular substrates: the role of pH. Nanoscale 16, 18468–18476 (2024).

    Google Scholar 

  82. Syamantak, K., Navneet, C. V., Prashant, G., Sanjhal, J., Souvik, G., & Nandi, C. K. Mechanistic insight into the carbon dots: protonation induced photoluminescence. J Mater. Sci. Eng. 7, 1000448 (2018).

  83. Šafranko, S., Stanković, A., Hajra, S., Kim, H.J., Strelec, I., Dutour-Sikirić, M., Weber, I., Bosnar, M.H., Grbčić, P., Pavelić, S.K. & Széchenyi, A. Preparation of multifunctional N-doped carbon quantum Dots from citrus Clementina peel: investigating targeted Pharmacological activities and the potential application for Fe3 + sensing. Pharmaceuticals 14, 857 (2021).

    Google Scholar 

  84. Olia, F., Fiori, F. & Innocenzi, P. Antioxidant-oxidant dual action of carbon Dots obtained through thermal processing of citric acid. Next Mater. 8, 100756 (2025).

    Google Scholar 

  85. Bao, W., Ma, H., Wang, N. & He, Z. pH-sensitive carbon quantum dots – doxorubicin nanoparticles for tumor cellular targeted drug delivery. Polym. Adv. Technol. 30, 2664–2673 (2019).

    Google Scholar 

  86. Ahamed, A., Samaranayake, P., Silva, V. D., Kooh, M. R. R., Wickramage, N., Rajapaksha, I. G., & Thotagamuge, R. Unveiling the pH-Responsive mechanisms of the carbon Dot–Proximicin-A peptide conjugate for targeted cancer therapy using density functional theory. Molecules 30, 896 (2025).

    Google Scholar 

  87. Pleskova, S., Pudovkina, E., Mikheeva, E. & Gorshkova, E. Interactions of quantum Dots with donor blood erythrocytes in vitro. Bull. Exp. Biol. Med. 156, 384–388 (2014).

    Google Scholar 

  88. Wang, J., Zheng, X. & Zhang, H. Exploring the conformational changes in fibrinogen by forming protein Corona with CdTe quantum Dots and the related cytotoxicity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 220, 117143 (2019).

    Google Scholar 

  89. Kotańska, M., Wojtaszek, K., Kubacka, M., Bednarski, M., Nicosia, N., & Wojnicki, M. The influence of caramel carbon quantum Dots and caramel on platelet aggregation, protein glycation and lipid peroxidation. Antioxidants 13, 13 (2023).

    Google Scholar 

  90. Ozdemir, N., Tan, G., Tevlek, A., Arslan, G., Zengin, G., & Sargin, I. Dead cell discrimination with red emissive carbon quantum Dots from the medicinal and edible herb echinophora tenuifolia. J Fluoresc. 1–18 (2025).

  91. Hashempour, S., Ghanbarzadeh, S., Maibach, H. I., Ghorbani, M. & Hamishehkar, H. Skin toxicity of topically applied nanoparticles. Therapeut. Del. 10, 383–396 (2019).

    Google Scholar 

Download references