Sustainable control of Phytophthora capsici in bell pepper using encapsulated Limosilactobacillus fermentum and reduced fungicide doses

sustainable-control-of-phytophthora-capsici-in-bell-pepper-using-encapsulated-limosilactobacillus-fermentum-and-reduced-fungicide-doses
Sustainable control of Phytophthora capsici in bell pepper using encapsulated Limosilactobacillus fermentum and reduced fungicide doses

References

  1. Hausbeck, M. K. & Lamour, K. H. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88, 1292–1303 (2004).

    Google Scholar 

  2. Barchenger, D. W., Lamour, K. H. & Bosland, P. W. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Front. Plant Sci. 9, 628. https://doi.org/10.3389/fpls.2018.00628 (2018).

    Google Scholar 

  3. Xu, X. et al. Mapping of novel race specific resistance gene to Phytophthora root rot in pepper (Capsicum annuum) using bulked Segregant analysis combined with specific length amplified fragment sequencing strategy. PLoS ONE. 11, e0151401. https://doi.org/10.1371/journal.pone.0151401 (2016).

    Google Scholar 

  4. Saltos, L. A., Monteros-Altamirano, Á. & Reis, A. Phytophthora capsici: the diseases it causes and management strategies to produce healthier vegetable crops. Horticultura Brasileira. 40 (1), 5–17. https://doi.org/10.1590/s0102-0536-20220101 (2022).

    Google Scholar 

  5. Abbasi, S., Alipour Kafi, S., Karimi, E. & Sadeghi, A. Streptomyces consortium improved quality attributes of bell pepper fruits, induced plant defense priming, and changed microbial communities of rhizosphere under commercial greenhouse conditions. Rhizosphere 23, 100570 (2022).

    Google Scholar 

  6. Lamont, J. R., Wilkins, O., Bywater-Ekegärd, M. & Smith, D. L. From yogurt to yield: potential applications of lactic acid bacteria in plant production. Soil Biol. Biochem. 111, 1–9 (2017).

    Google Scholar 

  7. Shrestha, A., Choi, K. U., Lim, C. K., Hur, J. H. & Cho, S. Y. Antagonistic effect of Lactobacillus sp. strain KLF01 against plant pathogenic bacteria Ralstonia solanacearum. Korean J. Pesticide Sci. 13 (1), 45–53 (2009).

    Google Scholar 

  8. Stoianova, L. G., Ustiugova, E. A. & Netrusov, A. I. Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Prikladnaya Biokhim. I Mikrobiologiya (Applied Biochem. Microbiology). 48 (3), 259–275 (2012).

    Google Scholar 

  9. Afify, A. H. & Ashour, A. Z. A. Biological control of Fusarium spp. Using lactic acid bacteria. J. Agricultural Chem. Biotechnol. https://doi.org/10.21608/jacb.2025.345177.1099 (2025).

    Google Scholar 

  10. Müller, T., & Seyfarth, W. Starvation and nonculturable state in plant-associated lactic acid bacteria. Microbiol. Res. 152, 39–43 (1997).

  11. Murindangabo, Y. T. et al. Prominent use of lactic acid bacteria in soil-plant systems. Appl. Soil. Ecol. 104955. https://doi.org/10.1016/j.apsoil.2023.104955 (2023).

  12. Yuan, S., Li, C., Yu, H., Xie, Y., Guo, Y. & Yao, W. Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. LWT 147, 111672 (2021).

  13. Patil, A., Disouza, J. & Pawar, S. Shelf-life stability of encapsulated lactic acid bacteria isolated from sheep milk thrived in different milk as natural media. Small Ruminant Res. 170, 19–25 (2019).

  14. Maryam Zarali, Sadeghi, A., Jafari, S. M., Ebrahimi, M. & Sadeghi Mahoonak, A. Enhanced viability and improved in situ antibacterial activity of the probiotic LAB microencapsulated layer-by-layer in alginate beads coated with Nisin. Food Bioscience. 53, 102593. https://doi.org/10.1016/j.fbio.2023.102593 (2023).

    Google Scholar 

  15. Gheorghita Puscaselu, R., Lobiuc, A., Dimian, M. & Covasa, M. Alginate: from food industry to biomedical applications and management of metabolic disorders. Polymers 12, 2417. https://doi.org/10.3390/polym12102417 (2020).

    Google Scholar 

  16. Goudarzi, F. et al. Potential probiotic Lactobacillus delbrueckii subsp. Lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci. Rep. 14, 9689. https://doi.org/10.1038/s41598-024-60061-2 (2024).

    Google Scholar 

  17. Kato, G. J., Steinberg, M. H. & Gladwin, M. T. Intravascular hemolysis and the pathophysiology of sickle cell disease. J. Clin. Invest. 127 (3), 750–760 (2017).

    Google Scholar 

  18. McCartney, H. A., Foster, S. J., Fraaije, B. A. & Ward, E. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 59 (2), 129–142. https://doi.org/10.1002/ps.575 (2003).

    Google Scholar 

  19. Tripathi, G. & Rawal, S. K. Simple and efficient protocol for isolation of high molecular weight DNA from Streptomyces aureofaciens. Biotechnol. Tech. 12, 629–631 (1998).

    Google Scholar 

  20. Chun, J. & Goodfellow, M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240–245 (1995).

    Google Scholar 

  21. Altschul, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–402 (1997).

  22. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab120 (2021).

    Google Scholar 

  23. Colombo, E. M. et al. Evaluation of in-vitro methods to select effective streptomycetes against toxigenic fusaria. PeerJ 7, e6905 (2019).

    Google Scholar 

  24. Sadeghi, A., Koobaz, P., Azimi, H., Karimi, E. & Akbari, A. R. Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl 62, 805–819 (2017).

    Google Scholar 

  25. Mushtaq, N. et al. Alginate beads encapsulated auxin-producing PGPR as a biofertilizer promotes Triticum aestivum growth. ACS Omega. 10 (5), 4303–4314 (2025).

    Google Scholar 

  26. Abbasi, S., Safaie, N., Sadeghi, A. & Shamsbakhsh, M. Tissue-specific synergistic bio-priming of pepper by two Streptomyces species against Phytophthora capsici. PLoS ONE, 15(3), e0230531. (2020).

  27. de Freire, L. et al. Limosilactobacillus fermentum strains as novel probiotic candidates to promote host health benefits and development of biotherapeutics: A comprehensive review. Probiotics Antimicrob. Proteins. 16 (4), 1483–1498. https://doi.org/10.1007/s12602-024-10235-1 (2024).

    Google Scholar 

  28. de Albuquerque, T. M. R. et al. In vitro characterization of Lactobacillus strains isolated from fruit processing by-products as potential probiotics. Probiotics Antimicrob. Proteins. 10, 704–716 (2018).

    Google Scholar 

  29. Łepecka, A., Szymański, P., Okoń, A. & Zielińska, D. Antioxidant activity of environmental lactic acid bacteria strains isolated from organic Raw fermented meat products. LWT 174, 114440. https://doi.org/10.1016/j.lwt.2023.114440 (2023).

    Google Scholar 

  30. Pakroo, S. et al. Limosilactobacillus fermentum ING8, a potential multifunctional non-starter strain with relevant technological properties and antimicrobial activity. Foods 11 (5), 703. https://doi.org/10.3390/foods11050703 (2022).

    Google Scholar 

  31. Wei, G. et al. Probiotic potential and safety properties of Limosilactobacillus fermentum A51 with high exopolysaccharide production. Front. Microbiol. 16, 1498352. https://doi.org/10.3389/fmicb.2025.1498352 (2025).

    Google Scholar 

  32. Mandal, S. & Mandal, N. C. Formulation of food grade Limosilactobacillus fermentum for antifungal properties isolated from home-made curd. Sci. Rep. 13, 20371. https://doi.org/10.1038/s41598-023-45487-4 (2023).

    Google Scholar 

  33. Saragoça, A. et al. Lactic acid bacteria: A sustainable solution against phytopathogenic agents. Environ. Microbiol. Rep. 16 (6), e70021. https://doi.org/10.1111/1758-2229.70021 (2024).

    Google Scholar 

  34. Ávila-Oviedo, J. L. et al. Antagonistic effects and volatile organic compound profiles of rhizobacteria in the biocontrol of Phytophthora capsici. Plants 13 (22), 3224. https://doi.org/10.3390/plants13223224 (2024).

    Google Scholar 

  35. Ouhaibi-Ben Abdeljalil, N., Vallance, J., Gerbore, J., Rey, P. & Daami-Remadi, M. Bio-suppression of Sclerotinia stem rot of tomato and biostimulation of plant growth using tomato-associated rhizobacteria. J. Plant. Pathol. Microbiol. 7, 1000331 (2016).

    Google Scholar 

  36. Kong, W. L., Li, P. S., Wu, X. Q., Wu, T. Y. & Sun, X. R. Forest tree associated bacterial diffusible and volatile organic compounds against various phytopathogenic fungi. Microorganisms 8, 590 (2020).

    Google Scholar 

  37. Sánchez-Fernández, R. E. et al. Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: A qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microb. Ecol. 71, 347–364 (2016).

    Google Scholar 

  38. Mikaberidze, A., Paveley, N., Bonhoeffer, S. & van den Bosch, F. Emergence of resistance to fungicides: the role of fungicide dose. Phytopathology 107 (5), 545–560 (2017).

    Google Scholar 

  39. Stetkiewicz, S., Burnett, F. J., Ennos, R. A. & Topp, C. F. E. The impact of fungicide treatment and integrated pest management on barley yields: analysis of a long term field trials database. Eur. J. Agron. 105, 111–118 (2019).

  40. Sanogo, S. & Ji, P. Integrated management of Phytophthora capsici on solanaceous and cucurbitaceous crops: current status, gaps in knowledge and research needs. Can. J. Plant Pathol. 34 (4), 479–492. https://doi.org/10.1080/07060661.2012.732117 (2012).

    Google Scholar 

  41. Foster, J. M. & Hausbeck, M. K. Managing Phytophthora crown and root rot in bell pepper using fungicides and host resistance. Plant Dis. 94, 697–702 (2010).

    Google Scholar 

  42. Ji, P., Yin, J. & Koné, D. Application of acibenzolar-S-methyl and standard fungicides for control of Phytophthora blight on squash. Crop Prot. 30 (12), 1601–1605. https://doi.org/10.1016/j.cropro.2011.08.019 (2011).

    Google Scholar 

  43. Sanogo, S. & Lujan, P. Seed, plant, and soil treatment with selected commercial Bacillus-based and Streptomyces-based biofungicides and chemical fungicides and development of Phytophthora blight on Chile pepper. Archives Phytopathol. Plant. Prot. 55 (3), 331–343. https://doi.org/10.1080/03235408.2021.2019426 (2021).

    Google Scholar 

  44. Saberi Riseh, R. et al. Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int. J. Mol. Sci. 22, 11165. https://doi.org/10.3390/ijms222011165 (2021).

    Google Scholar 

  45. Saberi-Riseh, R. & Moradi-Pour, M. A novel encapsulation of Streptomyces fulvissimus UTS22 by spray drying and its biocontrol efficiency against Gaeumannomyces graminis, the causal agent of take-all disease in wheat. Pest Manag. Sci. 77, 4357–4364 (2021).

    Google Scholar 

  46. Zhang, C. et al. Alginate oligosaccharide (AOS) induced resistance to Pst DC3000 via Salicylic acid-mediated signaling pathway in Arabidopsis Thaliana. Carbohydr. Polym. 225, 115221 (2019).

    Google Scholar 

  47. Dey, P., Ramanujam, R., Venkatesan, G. & Nagarathnam, R. Sodium alginate potentiates antioxidant defense and PR proteins against early blight disease caused by Alternaria Solani in Solanum lycopersicum Linn. PLoS ONE. 14 (9), e0223216. https://doi.org/10.1371/journal.pone.0223216 (2019).

    Google Scholar 

  48. Zhou, J. et al. Trichoderma Brevicompactum 6311: prevention and control of phytophthora capsici and its growth-promoting effect. J. Fungi. 11 (2), 105. https://doi.org/10.3390/jof11020105 (2025).

    Google Scholar 

  49. Bashizi, T. F. et al. Application of a synthetic microbial community to enhance pepper resistance against Phytophthora capsici. Plants 14 (11), 1625. https://doi.org/10.3390/plants14111625 (2025).

    Google Scholar 

  50. Santos, M. et al. Biocontrol of diseases caused by Phytophthora capsici and P. parasitica in pepper plants. J. Fungi. 9 (3), 360. https://doi.org/10.3390/jof9030360 (2023).

    Google Scholar 

Download references