Sustainable gelatine–alginate biopolymer binder enhancing pigment printing and functional performance of textiles

sustainable-gelatine–alginate-biopolymer-binder-enhancing-pigment-printing-and-functional-performance-of-textiles
Sustainable gelatine–alginate biopolymer binder enhancing pigment printing and functional performance of textiles

References

  1. AlAshkar, A. & Hassabo, A. G. Recent use of natural animal dyes in various field. J. Text. Color. Polym. Sci. 18(2), 191–210. https://doi.org/10.21608/jtcps.2021.79791.1067 (2021).

    Google Scholar 

  2. El-Sayed, G. A., Othman, H. & Hassabo, A. G. An overview on the eco-friendly printing of jute fabrics using natural dyes. J. Text. Color. Polym. Sci. 18(2), 239–245. https://doi.org/10.21608/jtcps.2021.84724.1071 (2021).

    Google Scholar 

  3. El-Apasery, M. A., Hussein, A. M., Nour El-Din, N. M., Saleh, M. O. & El-Adasy, A.-B.A. Microwave-assisted Dyeing of wool fabrics with natural dyes as eco- friendly dyeing method: Part I. dyeing performance and fastness properties. Egy. J. Chem. 64(7), 3751–3759. https://doi.org/10.21608/ejchem.2021.72134.3588 (2021).

    Google Scholar 

  4. El-Apasery, M. A., Hussein, A. M., Nour El-Din, N. M., Saleh, M. O. & El-Adasy, A.-B.A. Microwave-assisted dyeing of wool fabrics with natural dyes as eco- friendly dyeing method: Part II. The effect of using different mordants. Egy. J. Chem. 64(7), 3761–3766. https://doi.org/10.21608/ejchem.2021.72139.3589 (2021).

    Google Scholar 

  5. Hassabo, A. G., Zayed, M. T., Bakr, M. & Othman, H. A. The Utilisation of gelatin biopolymer in textile wet processing. J. Text. Color. Polym. Sci. 19(2), 125–136. https://doi.org/10.21608/jtcps.2022.128913.1113 (2022).

    Google Scholar 

  6. Ebrahim, S. A., Mosaad, M. M., Othman, H. & Hassabo, A. G. A valuable observation of eco-friendly natural dyes for valuable utilisation in the textile industry. J. Text. Color. Polym. Sci. 19(1), 25–37. https://doi.org/10.21608/jtcps.2021.97342.1090 (2022).

    Google Scholar 

  7. Ragab, M. M., Othman, H. A. & Hassabo, A. G. An overview of printing textile techniques. Egy. J. Chem. 65(8), 749–761. https://doi.org/10.21608/ejchem.2022.131477.5793 (2022).

    Google Scholar 

  8. Saad, F., Mosaad, M. M., Othman, H. & Hassabo, A. G. A critique on pigment printing techniques. J. Text. Color. Polym. Sci. https://doi.org/10.21608/jtcps.2025.348062.1404 (2025).

    Google Scholar 

  9. Saad, F., Hassabo, A., Othman, H., Mosaad, M. M. & Mohamed, A. L. A valuable observation on thickeners for valuable utilisation in the printing of different textile fabrics. Egy. J. Chem. 65(4), 431–448. https://doi.org/10.21608/ejchem.2021.96612.4521 (2022).

    Google Scholar 

  10. Ebrahim, S. A., Othman, H. A., Mosaad, M. M. & Hassabo, A. G. Eco-friendly natural thickener (pectin) extracted from fruit peels for valuable utilization in textile printing as a thickening agent. Textiles 3(1), 26–49 (2023).

    Google Scholar 

  11. Ebrahim, S. A., Hassabo, A. G. & Othman, H. Natural Thickener in textile printing (a mini review). J. Text. Color. Polym. Sci. 18(1), 55–64. https://doi.org/10.21608/jtcps.2021.69482.1051 (2021).

    Google Scholar 

  12. Hamdy, D. M., Hassabo, A. G. & Othman, H. Recent use of natural thickeners in the printing process. J. Text. Color. Polym. Sci. 18(2), 75–81. https://doi.org/10.21608/jtcps.2021.69754.1053 (2021).

    Google Scholar 

  13. Ghazal, H., Hegazy, B. M., Saad, F., Sedik, A. & Hassabo, A. G. Application of keratin biopolymer in the textile industry. Lett. Appl. NanoBioSci. 13(1), 43. https://doi.org/10.33263/LIANBS131.043 (2024).

    Google Scholar 

  14. El-Zawahry, M. M., Kamel, M. M. & Hassabo, A. G. Development of bio-active cotton fabric coated with betalain extract as encapsulating agent for active packaging textiles. Indust. Crop. Prod. 222, 119583. https://doi.org/10.1016/j.indcrop.2024.119583 (2024).

    Google Scholar 

  15. Mamdouh, F., Othman, H. & Hassabo, A. G. Improving the performance properties of polyester fabrics through treatments with natural polymers. J. Text. Color. Polym. Sci. 22(1), 219–231. https://doi.org/10.21608/jtcps.2024.291557.1373 (2025).

    Google Scholar 

  16. Ragab, M. M., Othman, H. & Hassabo, A. G. Natural polymers and their application in the textile sector (Review). J. Text. Color. Polym. Sci. 22(2), 93–113. https://doi.org/10.21608/jtcps.2024.292045.1372 (2025).

    Google Scholar 

  17. Hassabo, A. G. et al. Natural polymers in medical textiles. J. Text. Color. Polym. Sci. 21(1), 131–147. https://doi.org/10.21608/jtcps.2023.222699.1225 (2024).

    Google Scholar 

  18. Sedik, A., Mosaad, M. M., Othman, H. A. & Mohamed, A. L. Incorporation of alginate/chitosan nano capsules loaded with sesame oil or omega-3 oil in cellulose fabrics for wound healing bandage. Egy. J. Chem. 65(5), 347–362. https://doi.org/10.21608/ejchem.2021.101880.4732 (2022).

    Google Scholar 

  19. Mohamed, A. L., El-Zawahry, M., Hassabo, A. G. & Abd El-Aziz, E. Encapsulated lemon oil and metal nanoparticles in biopolymer for multifunctional finishing of cotton and wool fabrics. Ind. Crops Prod. 204, 117373. https://doi.org/10.1016/j.indcrop.2023.117373 (2023).

    Google Scholar 

  20. Derkach, S. R., Kuchina, Y. A., Baryshnikov, A. V., Kolotova, D. S. & Voron’ko NG,. Tailoring cod gelatin structure and physical properties with acid and alkaline extraction. Polymers 11(10), 1724 (2019).

    Google Scholar 

  21. Lin, K. et al. Advanced collagen-based biomaterials for regenerative biomedicine. Adv. Func. Mater. 29(3), 1804943 (2019).

    Google Scholar 

  22. Gómez-Guillén, M., Giménez, B., Ma, L.-C. & Montero, M. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids 25(8), 1813–1827 (2011).

    Google Scholar 

  23. Zhang, T. et al. Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification. Trends Food Sci. Technol. 106, 113–131 (2020).

    Google Scholar 

  24. Schrieber, R. Gelatine handbook: Theory and industrial practice (John Wiley & Sons, 2007).

    Google Scholar 

  25. Duconseille, A., Astruc, T., Quintana, N., Meersman, F. & Sante-Lhoutellier, V. Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocoll. 43, 360–376 (2015).

    Google Scholar 

  26. Tang, J. & WANG X,. Application of cationic gelatin protein in cotton fabric scouring and bleaching. J Xi’an Polytech. Univ. 29(2), 146–152 (2015).

    Google Scholar 

  27. Wang, X. & Tang, J. An evaluation of the effectiveness of applying a gelatin–copper complex in the low-temperature bleaching of cotton with hydrogen peroxide. Color. Technol. 133(4), 300–304 (2017).

    Google Scholar 

  28. Wang, X. & Gao, J. Absorption spectra of gelatin copper complexes and copper (II) sulfate and their impact on cotton peroxide bleaching. J. Nat. Fibers 16(3), 307–318 (2019).

    Google Scholar 

  29. Ha, S. Y. & Jang, J. D. Improving the dyeability of gelatin pretreated cotton fabrics dyeing with cochineal in ethanol-water mixture. Text. Color. Finish. 31(3), 127–134 (2019).

    Google Scholar 

  30. Schwindt, W. & Faulhaber, G. The development of pigment printing over the last 50 years. Rev. Prog. Color. Relat. Top. 14(1), 166–175 (1984).

    Google Scholar 

  31. Grund N. Okologische Parameter im Pigmentdruck. Melliand Textilberichte-International Textile Reports-German Edition. 75(7), 630–635, (1994).

  32. Fay, R. Pigmentdruck im spannungsfeld zwischen hohem qualitatsstandard und okologischen anforderungen. Melliand Textilber. 75(12), 1007–1010 (1994).

    Google Scholar 

  33. Choudhury, A. K. R. Principles of textile printing (CRC Press, 2022).

    Google Scholar 

  34. Bahmani, S., East, G. & Holme, I. The application of chitosan in pigment printing. Color. Technol. 116(3), 94–99 (2000).

    Google Scholar 

  35. Mekkriengkrai, D. et al. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber. Biomacromol 5(5), 2013–2019 (2004).

    Google Scholar 

  36. Ibrahim, N. A., Zaher, A. R. & El-Hennawi, H. M. Antimicrobial printed linen fabric by using brewer’s yeast enzyme. Beni-Suef Univ. J. Basic Appl. Sci. 13(1), 76 (2024).

    Google Scholar 

  37. El-Hennawi, H. & Hanafy, N. A. Eco-friendly dyeing of natural-mordanted viscose fabrics with natural turmeric dye. J. Text. Color. Polym. Sci. 19(2), 349–355 (2022).

    Google Scholar 

  38. ASTM E 258-07 (Reapproved 2015) Total Nitrogen in Organic Materials by Modified Kjeldahl Method (2018). https://doi.org/10.1520/e0258-07r15

  39. Barnes, H. A. Thixotropic—A Review. J Non-Newton. Fluid Mech. 70, 1–33. https://doi.org/10.1016/S0377-0257(97)00004-9 (1997).

    Google Scholar 

  40. Abd El-Salam, N. A., Othman, H., Hassabo, A. G. & Shahin, A. R. Rheological properties and printing performance of neem gum as an eco-friendly thickening agent for textile printing. Egy. J. Chem. https://doi.org/10.21608/ejchem.2025.403616.12035 (2025).

    Google Scholar 

  41. Mewis, J. & Wagner, N. J. Thixotropy. Adv. Coll. Interface. Sci. 147–148, 214–227. https://doi.org/10.1016/j.cis.2008.09.005 (2009).

    Google Scholar 

  42. Mewis, J. & Wagner, N. J. Current Trend in Suspension Rheology. J. Non-Newton. Fluid Mech 157, 147–150. https://doi.org/10.1016/j.jnnfm.2008.11.004 (2009).

    Google Scholar 

  43. Saad, F., Hassabo, A. G., Othman, H. A., Mosaad, M. M. & Mohamed, A. L. Improving the performance of flax seed gum using metal oxides for using as a thickening agent in printing paste of different textile fabrics. Egy. J. Chem. 64(9), 4937–4954. https://doi.org/10.21608/EJCHEM.2021.88724.4265 (2021).

    Google Scholar 

  44. Durairaj, R., Man, L. W. & Ramesh, S. Rheological Characterisation and empirical modelling of lead-free solder pastes and isotropic conductive adhesive pastes. J. ASTM Int. 7(7), JAI103009. https://doi.org/10.1520/JAI103009 (2010).

    Google Scholar 

  45. Pospischil, M. et al. Investigations of thick-film-paste rheology for dispensing applications. Energy Proced. 8, 449–454. https://doi.org/10.1016/j.egypro.2011.06.164 (2011).

    Google Scholar 

  46. Saad, F., Mohamed, A. L., Mosaad, M., Othman, H. A. & Hassabo, A. G. Enhancing the rheological properties of aloe vera polysaccharide gel for use as an eco-friendly thickening agent in textile printing paste. Carbohydr. Polym. Technol. App. 2, 100132. https://doi.org/10.1016/j.carpta.2021.100132 (2021).

    Google Scholar 

  47. Hassabo, A. G., Ebrahim, S., Othman, H. A. & Mosaad, M. M. Using pectin to enhance the dyeability performance and antimicrobial activity using different dyes on modified proteinic and synthetic fabrics. Biointerf. Res. Appl. Chem. https://doi.org/10.33263/BRIAC135.467 (2023).

    Google Scholar 

  48. Evans, J. & Beddow, J. Characterisation of Particle morphology and rheological behaviour in solder paste. IEEE Transact. Compon. Hybrids Manufactur. Technol. 10(2), 224–231. https://doi.org/10.1109/TCHMT.1987.1134725 (1987).

    Google Scholar 

  49. Koszkul, J. & Nabialek, J. Viscosity models in simulation of the filling stage of the injection molding process. J. Mater. Process. Technol. 157–158, 183–187. https://doi.org/10.1016/j.jmatprotec.2004.09.027 (2004).

    Google Scholar 

  50. Bullard, J. W., Pauli, A. T., Garboczi, E. J. & Martys, N. S. Comparison of viscosity-concentration relationships for emulsion. J. Colloid Interface Sci. 330, 186–193. https://doi.org/10.1016/j.jcis.2008.10.046 (2009).

    Google Scholar 

  51. McLelland, A. R. A., Henderson, N. G., Atkinson, H. V. & Kirkwood, D. H. Anomalous rheological behavior of semi-solid alloy slurries at low shear rates. Mater. Sci. Eng., A 232, 110–118. https://doi.org/10.1016/S0921-5093(97)00105-6 (1997).

    Google Scholar 

  52. Kubelka, P. & Munk, F. Ein Beitrag zur Optik der Farbanstriche. Z Tech. Phys. 12, 593. https://doi.org/10.1007/978-3-642-27851-8_300-1 (1931).

    Google Scholar 

  53. Mehta, K. T., Bhavsar, M. C., Vora, P. M. & Shah, H. S. Estimation of the Kubelka-Munk scattering coefficient from single particle scattering parameters. Dyes Pigm. 5(5), 329–340. https://doi.org/10.1016/0143-7208(84)80027-3 (1984).

    Google Scholar 

  54. Waly A, Marie MM, Abou-Zeid NY, El-Sheikh MA, Mohamed AL Process of Single–Bath Dyeing, Finishing and Flam–Retarding of Cellulosic Textiles in Presence of Reactive Tertiary Amines. In: 3rd International Conference of Textile Research Division, NRC; Textile Processing: State of the Art & Future Developments, Cairo, Egypt. 529–543, (2006)

  55. Waly, A., Marie, M. M., Abou-Zeid, N. Y., El-Sheikh, M. A. & Mohamed, A. L. Flame retarding, easy care finishing and dyeing of cellulosic textiles in one bath. Egy. J. Text. Polym. Sci. Technol. 12(2), 101–131 (2008).

    Google Scholar 

  56. Hassabo, A. G. Synthesis and Deposition of Functional Nano-Materials on Natural Fibres Polymer Chemistry (RWTH Aachen University, 2011).

    Google Scholar 

  57. Mohamed, A. L. & Hassabo, A. G. Cellulosic fabric treated with hyperbranched polyethyleneimine derivatives for improving antibacterial, dyeing, pH and thermo-responsive performance. Int. J. Biol. Macromol. 170, 479–489. https://doi.org/10.1016/j.ijbiomac.2020.12.198 (2021).

    Google Scholar 

  58. Hassabo, A. G. Preparation (Thesis, El-Azhar University, Cairo, Egypt, 2005).

    Google Scholar 

  59. Hegazy, B. M., Othman, H. & Hassabo, A. G. Polycation natural materials for improving textile dyeability and functional performance. J. Text. Color. Polym. Sci. 19(2), 155–178. https://doi.org/10.21608/jtcps.2022.131643.1116 (2022).

    Google Scholar 

  60. Hegazy, B. M., Othman, H. A. & Hassabo, A. G. Polyanion biopolymers for enhancing the dyeability and functional performance of different textile materials using basic and natural dyes. Egy. J. Chem. 65(8), 177–196. https://doi.org/10.21608/ejchem.2022.113792.5168 (2022).

    Google Scholar 

  61. AATCC Test Method (61–2013) (2017) Color Fastness to Laundering: Accelerated. Technical Manual Method American Association of Textile Chemists and Colorists, Research Triangle Park, NC, USA.

  62. AATCC Test Method (8–2016) (2018) Colorfastness to Crocking, Crockmeter Method. Technical Manual Method vol 86. American Association of Textile Chemists and Colorists, Research Triangle Park, NC, USA.

  63. AATCC Test Method (15–2013) (2017) Colour Fastness to Perspiration. Technical Manual Method. 86 American Association of Textile Chemists and Colorists, Research Triangle Park, NC, USA.

  64. AATCC Test Method (16.1–2014) (2015) Colour Fastness to Light: Outdoor. Technical Manual Method . 161. American Association of Textile Chemists and Colorists, Research Triangle Park, NC, USA.

  65. Australian/New Zealand Standard AS/NZS 4399:2020 (2020) Sun protective clothing— Evaluation and Classification. Standards Australia Ltd. and Standards New Zealand, Sydney/Wellington

  66. Ibrahim, N. A., Refaie, R., Youssef, M. A. & Farouk, A. Proper finishing treatments for sun protective cotton containing fabrics. J. Appl. Polym. Sci. 97(3), 1024–1032. https://doi.org/10.1002/app.21840 (2005).

    Google Scholar 

  67. Mohamed, A. L., Hassabo, A. G., Shaarawy, S. & Hebeish, A. Benign development of cotton with antibacterial activity and metal sorpability through introduction amino triazole moieties and AgNPs in cotton structure pre-treated with periodate. Carbohyd. Polym. 178, 251–259. https://doi.org/10.1016/j.carbpol.2017.09.024 (2017).

    Google Scholar 

  68. Mohamed, A. L. & Hassabo, A. G. Composite material based on Pullulan/Silane/ZnO-NPs as pH, thermo-sensitive and antibacterial agent for cellulosic fabrics. Adv. Nat. Sci. Nanosci. Nanotechnol. 9(4), 045001–045009. https://doi.org/10.1088/2043-6254/aaeee0 (2018).

    Google Scholar 

  69. Hassabo, A. G., El-Naggar, M. E., Mohamed, A. L. & Hebeish, A. A. Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohyd. Polym. 210, 144–156. https://doi.org/10.1016/j.carbpol.2019.01.066 (2019).

    Google Scholar 

  70. El-Naggar, M. E., Hassabo, A. G., Mohamed, A. L. & Shaheen, T. I. Surface modification of SiO2 coated ZnO nanoparticles for multifunctional cotton fabrics. J. Colloid. Interface Sci. 498, 413–422. https://doi.org/10.1016/j.jcis.2017.03.080 (2017).

    Google Scholar 

  71. ASTM Standard Test Method (D5035–11 (Reapproved 2019)) (2019) Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method). ASTM International, West Conshohocken, PA, USA

  72. AATCC Test Method (66–2014) (2017) Wrinkle Recovery of Fabric: Recovery Angle Method. Technical Manual Method American Association of Textile Chemists and Colorists, Research Triangle Park, NC, USA.

  73. ASTM Standard Test Method (D1388 − 14e1) (2016) Standard Test Methods for Stiffness of Fabrics. ASTM International, West Conshohocken, PA, USA

  74. Hassabo, A. G., Shaarawy, S., Mohamed, A. L. & Hebiesh, A. Multifarious cellulosic through innovation of highly sustainable composites based on Moringa and other natural precursors. Int. J. Biol. Macromol. 165, 141–155. https://doi.org/10.1016/j.ijbiomac.2020.09.125 (2020).

    Google Scholar 

  75. AATCC Test Method (100–2019) (2019) Assessment Of Antimicrobial Finishes On Textile Materials. Technical Manual Method vol 68. American Association of Textile Chemists and Colorists,

  76. Khattab, T. A., Mohamed, A. L. & Hassabo, A. G. Development of durable superhydrophobic cotton fabrics coated with silicone/stearic acid using different cross-linkers. Mater. Chem. Phys. 249, 122981. https://doi.org/10.1016/j.matchemphys.2020.122981 (2020).

    Google Scholar 

  77. Pargai, D., Jahan, S. & Gahlot, M. Functional properties of natural dyed textiles. IntechOpen https://doi.org/10.5772/intechopen.88933 (2020).

    Google Scholar 

  78. Abo-Shosha, M. H., Nassar, F. A., Haggag, K., El-Sayed, Z. & Hassabo, A. G. Utilization of some fatty Acid/PEG condensates as emulsifiers in kerosene paste pigment printing. RJTA 13(1), 65–77. https://doi.org/10.1108/RJTA-13-01-2009-B007 (2009).

    Google Scholar 

  79. Ragheb, A., Abd El-Thalouth, I., El-Sayad, H. & Hebeish, A. Preparation and characterization of carboxymethylcellulose from jute wastes. Indian J. Fibre Text. Res. 16, 263 (1991).

    Google Scholar 

  80. Hebeish, A., Ibrahim, N. A., Abo Shosha, M. H. & Fahmy, H. M. Rheological behavior of some polymeric sizing agents alone and in admixtures. Polym. Plast Technol. Eng. 35(4), 517–543. https://doi.org/10.1080/03602559608000590 (1996).

    Google Scholar 

  81. Teli, M. D., Adivarekar, R. V., Yogesh, C., John, S. Rheological Study of Thickeners. Colourage Annual. 23, (2003).

  82. Teli, M. D. & Vyas, U. V. Rheological behavior of textile thickeners. Am. Dyest. Rep. 79(2), 15–21 (1990).

    Google Scholar 

  83. Kamel, M. Y. & Hassabo, A. G. Anti-microbial finishing for natural textile fabrics. J. Text. Color. Polym. Sci. 18(2), 83–95. https://doi.org/10.21608/jtcps.2021.72333.1054 (2021).

    Google Scholar 

  84. Hassabo, A. G. & Mohamed, A. L. Novel flame retardant and antibacterial agent containing MgO NPs, phosphorus, nitrogen and silicon units for functionalise cotton fabrics. Biointerf. Res. Appl. Chem. 9(5), 4272–4278. https://doi.org/10.33263/BRIAC95.272278 (2019).

    Google Scholar 

  85. Biswas, B., Rogers, K., McLaughlin, F., Daniels, D. & Yadav, A. Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. Int. J. Microbiol. 1–7, 746165. https://doi.org/10.1155/2013/746165 (2013).

    Google Scholar 

  86. Metwally, A. M., Omar, A. A., Harraz, F. M. & El Sohafy, S. M. Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves. Pharmacogn Mag. 6(23), 212–218. https://doi.org/10.4103/0973-1296.66939 (2010).

    Google Scholar 

  87. Dhiman, A., Nanda, A., Ahmad, S. & Narasimhan, B. In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L. J. Pharm. Bioallied Sci. 3(2), 226–237. https://doi.org/10.4103/0975-7406.80776 (2011).

    Google Scholar 

Download references