References
-
Kumari, S. et al. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 27, 1739–1763. https://doi.org/10.1016/j.jmrt.2023.09.291 (2023).
-
Rana, A., Yadav, K. & Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J. Clean. Prod. 272, 122880. https://doi.org/10.1016/j.jclepro.2020.122880 (2020).
-
Naseem, T. & Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. Environ. Chem. Ecotoxicol. 3, 59–75. https://doi.org/10.1016/j.enceco.2020.12.001 (2021).
-
Arulmurugan, B. et al. Nanostructured metals: opticlectrical, and mechanical properties. In Mechanics of Nanomaterials and Polymer Nanocomposites 69–85 (2023). https://doi.org/10.1007/978-981-99-2352-6_4
-
Kumar, S. et al. Optically active nanomaterials and its biosensing applications—a review. Biosensors 13, 85. https://doi.org/10.3390/bios13010085 (2023).
-
Štukovnik, Z., Fuchs-Godec, R. & Bren, U. Nanomaterials and their recent applications in impedimetric biosensing. Biosensors 13, 899. https://doi.org/10.3390/bios13100899 (2023).
-
Malik, S., Muhammad, K. & Waheed, Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 28, 6624. https://doi.org/10.3390/molecules28186624 (2023).
-
Xia, C. et al. Optimistic and possible contribution of nanomaterial on biomedical applications: a review. Environ. Res. 218, 114921. https://doi.org/10.1016/j.envres.2022.114921 (2023).
-
Chandrasekhar, N. & Vinay, S. P. Yellow colored blooms of Argemone Mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity. Appl. Nanosci. 7, 851–861. https://doi.org/10.1007/s13204-017-0624-5 (2017).
-
Vinay, S. P., Chandrasekhar, N. & Chandrappa, C. P. Eco-friendly approach for the green synthesis of silver nanoparticles using flower extracts of Sphagneticola trilobata and study of antibacterial activity. Int. J. Pharm. Biol. Sci. 7, 145–152 (2017).
-
Jafarzadeh, S. et al. Plant protein-based nanocomposite films: a review on the used nanomaterials, characteristics, and food packaging applications. Crit. Rev. Food Sci. Nutr. 63, 9667–9693. https://doi.org/10.1080/10408398.2022.2070721 (2023).
-
Deshmukh, R. K., Kumar, L. & Gaikwad, K. K. Halloysite nanotubes for food packaging application: a review. Appl. Clay Sci. 234, 106856. https://doi.org/10.1016/j.clay.2023.106856 (2023).
-
Hussein, A. R. et al. Acabamento Antimicrobiano de têxteis a partir Da utilização de nanomateriais. Braz J. Biol. 84, e264947. https://doi.org/10.1590/1519-6984.264947 (2023).
-
Yduzzaman, M., Hassan, A., Anik, H. R., Akter, M. & Islam, M. R. Nanotechnology for high-performance textiles: a promising frontier for innovation. ChemNanoMat 9, e202300205 (2023). https://doi.org/10.1002/cnma.202300205
-
Deng, A. et al. Unlocking the potential of MOF-derived carbon-based nanomaterials for water purification through advanced oxidation processes: a comprehensive review on the impact of process parameter modulation. Sep. Purif. Technol. 318, 123998. https://doi.org/10.1016/j.seppur.2023.123998 (2023).
-
Mohamed, H. E. A. et al. Physicochemical and nanomedicine applications of phyto-reduced erbium oxide (Er₂O₃) nanoparticles. AMB Expr. 13, 24. https://doi.org/10.1186/s13568-023-01527-w (2023).
-
Huseien, G. F. Potential applications of core-shell nanoparticles in construction industry revisited. Appl. Nano. 4, 75–114. https://doi.org/10.3390/applnano4020006 (2023).
-
Raj, R. S. et al. Z. Nanomaterials in geopolymer composites: a review. Dev. Built Environ. 13, 100114. https://doi.org/10.1016/j.dibe.2022.100114 (2023).
-
Liu, Y., Zhong, X. & Mohammadian, H. R. Role of carbon nanomaterials in reinforcement of concrete and cement: a new perspective in civil engineering. Alex Eng. J. 72, 649–656. https://doi.org/10.1016/j.aej.2023.04.025 (2023).
-
Hasen, H. M. & Tuama, R. J. Review about the applications of nanoparticles in batteries. J. Eng. 29, 47–60. https://doi.org/10.31026/j.eng.2023.08.04 (2023).
-
Vijayakumar, V. et al. R. 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13, 2203326. https://doi.org/10.1002/aenm.202203326 (2023).
-
Gong, Y. & Xue, Y. H. Carbon nanomaterials for stabilizing zinc anodes in zinc-ion batteries. New. Carbon Mater. 38, 438–454. https://doi.org/10.1016/S1872-5805(23)60740-1 (2023).
-
Hussein, H. S. The state of the Art of nanomaterials and its applications in energy saving. Bull. Natl. Res. Cent. 47, 7. https://doi.org/10.1186/s42269-023-00984-4 (2023).
-
Yang, M., Ye, Z., Ren, Y., Farhat, M. & Chen, P. Y. Recent advances in nanomaterials used for wearable electronics. Micromachines 14, 603. https://doi.org/10.3390/mi14030603 (2023).
-
Xu, X. et al. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: techniques, applications, and perspectives. Adv. Colloid Interface Sci. 321, 102987. https://doi.org/10.1016/j.cis.2023.102987 (2023).
-
Iravani, S. & Varma, R. S. Sustainable synthesis of Cobalt and Cobalt oxide nanoparticles and their catalytic and biomedical applications. Green. Chem. 22, 2643–2661. https://doi.org/10.1039/D0GC00885K (2020).
-
Said, Z. et al. Nanotechnology-integrated phase change material and nanofluids for solar applications as a potential approach for clean energy strategies: progress, challenges, and opportunities. J. Clean. Prod. 416, 137736. https://doi.org/10.1016/j.jclepro.2023.137736 (2023).
-
Wang, Q. et al. A review of applications of plasmonic and conventional nanofluids in solar heat collection. Appl. Therm. Eng. 219, 119476. https://doi.org/10.1016/j.applthermaleng.2022.119476 (2023).
-
Ferry, D. B., Rasheed, T., Anwar, M. T. & Imran, M. Graphene and graphene derived nanomaterials as versatile candidates for organic solar cells and smart windows applications–a review. ChemistrySelect 9, e202301442. https://doi.org/10.1002/slct.202301442 (2024).
-
Hkiri, K., Mohamed, H. E. A., Ghotekar, S. & Maaza, M. Green synthesis of cerium oxide nanoparticles using Portulaca Oleracea extract: photocatalytic activities. Inorg. Chem. Commun. 162, 112243. https://doi.org/10.1016/j.inoche.2024.112243 (2024).
-
Mohamed, H. E. A., Hilal-Alnaqbi, A., Dagher, S., Akhozheya, B. & Maaza, M. Green synthesis of CdWO₄ nanorods with enhanced photocatalytic activity utilizing hyphaene Thebaica fruit. ChemistrySelect 7, e202201442. https://doi.org/10.1002/slct.202201442 (2022).
-
Omeiza, L. A. et al. Nanostructured electrocatalysts for advanced applications in fuel cells. Energies 16, 1876. https://doi.org/10.3390/en16041876 (2023).
-
Haque, S., Nasar, A., Duteanu, N. & Pandey, S. ul, Carbon-based nanomaterials used in biofuel cells–a review. Fuel 331, 125634 (2023). https://doi.org/10.1016/j.fuel.2022.125634
-
Bhatt, R., Shukla, P., Mishra, A. & Bajpai, A. K. Emerging applications of nano-modified bio-fuel cells. Nanotechnol. Adv. Biofuel. 213–242. https://doi.org/10.1016/B978-0-323-91759-9.00002-2 (2023).
-
Zhang, D. et al. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res. 16, 11938–11958. https://doi.org/10.1007/s12274-022-4917-y (2023).
-
Abedi-Firoozjah, R. et al. Nanomaterial-based sensors for the detection of pathogens and microbial toxins in the food industry: a review on recent progress. Coord. Chem. Rev. 500, 215545. https://doi.org/10.1016/j.ccr.2023.215545 (2024).
-
Lawaniya, S. D. et al. Functional nanomaterials in flexible gas sensors: recent progress and future prospects. Mater. Today Chem. 29, 101428. https://doi.org/10.1016/j.mtchem.2023.101428 (2023).
-
Saleh, T. A. & Fadillah, G. Green synthesis protocols, toxicity, and recent progress in nanomaterial-based environmental chemical sensors applications. Trends Environ. Anal. Chem. 39, e00204. https://doi.org/10.1016/j.teac.2023.e00204 (2023).
-
Ghotekar, S. et al. A novel approach towards biosynthesis of BiVO4 nanoparticles and their anticancer, antioxidant, and photocatalytic activities. J. Sol-Gel Sci. Technol. 109, 784–794. https://doi.org/10.1007/s10971-024-06317-9 (2024).
-
Matussin, S. N. et al. α-Glucosidase inhibitory activity and cytotoxicity of CeO₂ nanoparticles fabricated using a mixture of different cerium precursors. ACS Omega. 9, 157–165. https://doi.org/10.1021/acsomega.3c02524 (2023).
-
El-Khawaga, A. M. & Zidan, A. Abd El-Mageed, A. I. Preparation methods of different nanomaterials for various potential applications: a review. J. Mol. Struct. 1281, 135148. https://doi.org/10.1016/j.molstruc.2023.135148 (2023).
-
Salem, S. S. A mini review on green nanotechnology and its development in biological effects. Arch. Microbiol. 205, 128. https://doi.org/10.1007/s00203-023-03467-2 (2023).
-
Vittaya, L., Chalad, C. & Sirimahachai, U. Green synthesis and biological activities of zinc oxide nanoparticles using ampelocissus martini rhizome extract. ChemistrySelect 9, e202304671. https://doi.org/10.1002/slct.202304671 (2024).
-
Borah, D. et al. Facile green synthesis of highly stable, water dispersible carbohydrate conjugated Ag, Au and Ag–Au biocompatible nanoparticles: catalytic and antimicrobial activity. Mater. Today Commun. 37, 107096. https://doi.org/10.1016/j.mtcomm.2023.107096 (2023).
-
Sheikh, S. et al. Biosynthesis of copper oxide nanoparticles using Uraria picta (Jacq.) plant extract and its characterization. Bioscan 18, 29–34 (2025). https://thebioscan.com/index.php/pub/article/view/487
-
Dubadi, R., Huang, S. D. & Jaroniec, M. Mechanochemical synthesis of nanoparticles for potential antimicrobial applications. Materials 16, 1460. https://doi.org/10.3390/ma16041460 (2023).
-
Mali, S. C., Dhaka, A., Sharma, S. & Trivedi, R. Review on biogenic synthesis of copper nanoparticles and its potential applications. Inorg. Chem. Commun. 149, 110448. https://doi.org/10.1016/j.inoche.2023.110448 (2023).
-
Nguyen, D. T. C. et al. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: a review. Sci. Total Environ. 857, 159278. https://doi.org/10.1016/j.scitotenv.2022.159278 (2023).
-
Singh, J., Kaur, G. & Rawat, M. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J. Bioelectron. Nanotechnol. 1, 9 (2016).
-
Raman, V. et al. Synthesis of Co₃O₄ nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity. Exp. Ther. Med. 11, 553–560. https://doi.org/10.3892/etm.2015.2946 (2016).
-
Khalil, A. T. et al. Biosynthesis of iron oxide (Fe₂O₃) nanoparticles via aqueous extracts of Sageretia thea (Osbeck) and their pharmacognostic properties. Green. Chem. Lett. Rev. 10, 186–201. https://doi.org/10.1080/17518253.2017.1339831 (2017).
-
Singh, A. K. A review on plant extract-based route for synthesis of Cobalt nanoparticles: photocatalytic, electrochemical sensing and antibacterial applications. Curr. Res. Green. Sustain. Chem. 5, 100270. https://doi.org/10.1016/j.crgsc.2022.100270 (2022).
-
Diallo, A., Beye, A. C., Doyle, T. B., Park, E. & Maaza, M. Green synthesis of Co₃O₄ nanoparticles via Aspalathus linearis: physical properties. Green. Chem. Lett. Rev. 8, 30–36. https://doi.org/10.1080/17518253.2015.1082646 (2015).
-
Askarinejad, A., Bagherzadeh, M. & Morsali, A. Catalytic performance of Mn₃O₄ and Co₃O₄ nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Appl. Surf. Sci. 256, 6678–6682. https://doi.org/10.1016/j.apsusc.2010.04.069 (2010).
-
Kaviyarasu, K., Raja, A. & Devarajan, P. A. Structural Elucidation and spectral characterizations of Co₃O₄ nanoflakes. Spectrochim Acta Mol. Biomol. Spectrosc. 114, 586–591. https://doi.org/10.1016/j.saa.2013.04.126 (2013).
-
Akhlaghi, N., Najafpour-Darzi, G. & Younesi, H. Facile and green synthesis of Cobalt oxide nanoparticles using ethanolic extract of Trigonella foenum-graecum (Fenugreek) leaves. Adv. Powder Technol. 31, 3562–3569. https://doi.org/10.1016/j.apt.2020.07.004 (2020).
-
Asha, G., Rajeshwari, V., Stephen, G., Gurusamy, S. & D. RachelC. J. Eco-friendly synthesis and characterization of Cobalt oxide nanoparticles by allium sativum species and its photocatalytic activity. Mater. Today Proc. 48, 486–493. https://doi.org/10.1016/j.matpr.2021.02.338 (2022).
-
Gaikar, P. S. et al. Green synthesis of Cobalt oxide thin films as an electrode material for electrochemical capacitor application. Curr. Res. Green. Sustain. Chem. 5, 100265. https://doi.org/10.1016/j.crgsc.2022.100265 (2022).
-
Chattopadhyay, S. et al. Surface-modified Cobalt oxide nanoparticles: new opportunities for anti-cancer drug development. Cancer Nanotechnol. 3, 13–23. https://doi.org/10.1007/s12645-012-0026-z (2012).
-
Khalil, A. T. et al. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase Cobalt oxide (Co₃O₄) nanoparticles via Sageretia thea (Osbeck). Arab. J. Chem. 13, 606–619. https://doi.org/10.1016/j.arabjc.2017.07.004 (2020).
-
Ajarem, J. S., Maodaa, S. N., Allam, A. A., Taher, M. M. & Khalaf, M. Benign synthesis of Cobalt oxide nanoparticles containing red algae extract: antioxidant, antimicrobial, anticancer, and anticoagulant activity. J. Clust Sci. 33, 717–728. https://doi.org/10.1007/s10876-021-02004-9 (2022).
-
Rasheed, T., Nabeel, F., Bilal, M. & Iqbal, H. M. Biogenic synthesis and characterization of Cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and Methyl orange dyes. Biocatal. Agric. Biotechnol. 19, 101154. https://doi.org/10.1016/j.bcab.2019.101154 (2019).
-
Iqbal, J. et al. Biogenic synthesis of green and cost-effective Cobalt oxide nanoparticles using Geranium Wallichianum leaves extract and evaluation of in vitro antioxidant, antimicrobial, cytotoxic and enzyme Inhibition properties. Mater. Res. Express. 6, 115407. https://doi.org/10.1088/2053-1591/ab4f04 (2019).
-
Hou, H. et al. Retracted article: novel green synthesis and antioxidant, cytotoxicity, antimicrobial, antidiabetic, anticholinergics, and wound healing properties of Cobalt nanoparticles containing Ziziphora clinopodioides lam leaves extract. Sci. Rep. 10, 12195. https://doi.org/10.1038/s41598-020-68951-x (2020).
-
Momen Eslamiehei, F., Mashreghi, M. & Matin, M. M. Advancing colorectal cancer therapy with biosynthesized Cobalt oxide nanoparticles: a study on their antioxidant, antibacterial, and anticancer efficacy. Cancer Nanotechnol. 15, 22. https://doi.org/10.1186/s12645-024-00258-2 (2024).
-
Bhusare, B. P., Ahire, M. L., John, C. K. & Nikam, T. D. Uraria picta: a comprehensive review on evidences of utilization and strategies of conservation. J. Phytol. 13, 41–47. https://doi.org/10.25081/jp.2021.v13.7028 (2021).
-
Ved, D. K. & Goraya, G. S. Demand and supply of medicinal plants in India. NMPB FRLHT. 18 (85), 210–252 (2007).
-
Vats, S., Kaushal, C., Timko, M. P. & Ganie, S. A. Uraria picta: a review on its ethnobotany, bioactive compounds, Pharmacology and commercial relevance. S Afr. J. Bot. 167, 333–354. https://doi.org/10.1016/j.sajb.2024.02.008 (2024).
-
Rahman, M. M., Gibbons, S. & Gray, A. I. Isoflavanones from Uraria picta and their antimicrobial activity. Phytochemistry 68, 1692–1697. https://doi.org/10.1016/j.phytochem.2007.04.015 (2007).
-
Chole, P. & Manjunath, B. T. Green synthesis of cobalt oxide nanoparticles with in vitro cytotoxicity assessment using pomegranate (Punica granatum L.) seed oil: a promising approach for antimicrobial and anticancer applications. Pharm. Sci. Technol. 11, e (2024). (2024) https://doi.org/10.14719/pst.2024.11.2
-
Mane, J. A., Nagore, D. H. & Chitlange, S. O. Uraria picta (Jacq.): a review on ethnomedical uses, phytochemistry, and biological activities. Asian J. Pharm. Clin. Res. 14, 40–44. https://doi.org/10.22159/ajpcr.2021v14i3.40383 (2021).
-
Mohamed, H. Optical properties of bio-engineered nano-scaled Y₂O₃ particles via Hyphaene Thebaica natural extract. J. Phys. Conf. Ser. 2970, 012003. https://doi.org/10.1088/1742-6596/2970/1/012003 (2025).
-
Akash, M. S. H. & Rehman, K. Essentials of Pharmaceutical Analysis 167–174 (Springer, 2020). https://doi.org/10.1007/978-981-15-2098-0
-
Kalsi, P. S. Spectroscopy of Organic Compounds (New Age International, 2007).
-
Wang, Z. L. New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497–1514. https://doi.org/10.1002/adma.200300384 (2003).
-
Fultz, B. & Howe, J. M. Transmission Electron Microscopy and Diffractometry of Materials (Springer, 2008). https://doi.org/10.1007/978-3-540-73886-2_7
-
Thomson, L., Saiju, A., Femina, C., Ph, D. & Dissertation St. Teresa’s College, Ernakulam (2019).
-
Bertolotti, F., Moscheni, D., Guagliardi, A. & Masciocchi, N. When crystals go nano: the role of advanced X-ray total scattering methods in nanotechnology. Eur. J. Inorg. Chem. 3789–3803. https://doi.org/10.1002/ejic.201800534 (2018).
-
Perez, C. Antibiotic assay by agar-well diffusion method. Acta Biol. Med. Exp. 15, 113–115 (1990).
-
Warrier, P. K. Indian Medicinal Plants: A Compendium of 500 Species, Vol. 5Orient Blackswan, (1993).
-
Harborne, A. J. Phytochemical Methods: A Guide To Modern Techniques of Plant Analysis (Springer Science & Business Media, 1998).
-
Ghosh, K., Rawal, P. & Pramanik, S. Vivo antioxidant and hypoglycaemic potentials of Rivina humilis extract against streptozotocin-induced diabetes and its complications in Wistar rats. J. Diabetes Metab. Disord. 22, 1373–1383. https://doi.org/10.1007/s40200-023-01258-6 (2023).
-
Perumal, V. & Ilangkumaran, M. The influence of copper oxide nanoparticle added Pongamia Methyl ester biodiesel on the performance, combustion and emission of a diesel engine. Fuel 232, 791–802. https://doi.org/10.1016/j.fuel.2018.04.129 (2018).
-
Mane, P. C. et al. Green adeptness in synthesis of non-toxic copper and Cobalt oxide nanocomposites with multifaceted bioactivities. Cancer Nanotechnol. 14, 79. https://doi.org/10.1186/s12645-023-00226-2 (2023).
-
Singh, J., Mehta, A., Rawat, M., Basu, S. & Chandel, S. Allium sativum–mediated phytogenic synthesis of Cobalt oxide nanoparticles and their antibacterial potential. Appl. Nanosci. 11, 2807–2817. https://doi.org/10.1007/s13204-020-01513-0 (2021).
-
Sahoo, S. K., Parida, U. K., Nayak, P. L., Nayak, S. & Panda, S. Green synthesis of Cobalt oxide nanoparticles using Hibiscus rosa-sinensis and its antimicrobial activity. Asian J. Chem. 27, 3453–3456. https://doi.org/10.14233/ajchem.2015.18674 (2015).
-
Asha, G., Rajeshwari, V., Stephen, G., Gurusamy, S. & Rachel, D. C. J. Eco-friendly synthesis and characterization of cobalt oxide nanoparticles and its photocatalytic activity. Mater. Today Proc. 48, 486–493 (2022). https://doi.org/10.3390/w15050910
-
Govindasamy, R. et al. Green synthesis and characterization of Cobalt oxide nanoparticles using Psidium Guajava leaves extracts and their photocatalytic and biological activities. Molecules 27, 5646. https://doi.org/10.3390/molecules27175646 (2022).
-
Abdi, M., Yusuf, Z. & Sasikumar, J. M. Phyto-fabrication of Cobalt oxide nanoparticles from Ocimum gratissimum L. leaf and flower extracts and their antimicrobial activities. Open. Biotechnol. J. 17, 1–10. https://doi.org/10.2174/0118740707261876230919053208 (2023).
-
Hemalatha, M. et al. Application of green synthesized ag and Cu nanoparticles for the control of bruchids and their impact on seed quality and yield in Greengram. Heliyon 10, e31551. https://doi.org/10.1016/j.heliyon.2024.e31551 (2024).
-
Al-Qasmi, N. Sustainable and efficacy approach of green synthesized Cobalt oxide (Co₃O₄) nanoparticles and evaluation of their cytotoxicity activity on cancerous cells. Molecules 27, 8163. https://doi.org/10.3390/molecules27238163 (2022).
-
Mubraiz, N., Bano, A., Mahmood, T. & Khan, N. Microbial and plant-assisted synthesis of Cobalt oxide nanoparticles and their antimicrobial activities. Agronomy 11, 1607. https://doi.org/10.3390/agronomy11081607 (2021).
-
Kgosiemang, I. K. et al. Green synthesis of magnesium and Cobalt oxide nanoparticles using Euphorbia tirucalli: characterization and potential application for breast cancer Inhibition. Inorg. Nano-Met Chem. 50, 1070–1080. https://doi.org/10.1080/24701556.2020.1735422 (2020).
-
Moawad, R. et al. Biosynthesis and health-promoting traits of green synthesized Cobalt oxide nanoparticles. Sci. Rep. 15, 727. https://doi.org/10.1038/s41598-024-82679-y (2025).
-
Matyi, R. J. & MacCuspie, R. I. IEEE Nanotechnol Mag 14, 1–12 (2020).
-
Khodaei, M. & Petaccia, L. (eds) X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation (BoD–Books on Demand, 2017).
-
Masadeh, S. et al. Phys. Rev. B 76, 1–10 (2007).
-
Honkeldieva, M. T., Li, H., Bukhorov, K. X., Ahmedov, H. A. & Yulbarsova, M. V. Fourier transformation of infrared spectroscopy and X-ray diffraction analyses of NPK mineral and biomineral fertilizers. IOP Conf. Ser. : Earth Environ. Sci. 868, 012042. https://doi.org/10.1088/1755-1315/868/1/012042 (2021).
-
Manikandan, R. et al. Eco-friendly synthesis, spectral, morphological analysis of Cobalt oxide nanoparticles (Co₃O₄NPs) mediated by leaves extract of Pedalium murex L. and its antibacterial, antifungal, antioxidant and anticancer (MCF-7 cell line) study. Indian J. Sci. Technol. 18, 102–112. https://doi.org/10.17485/IJST/v18i2.2816 (2025).
-
Ogunyemi, S. O. et al. Cobalt oxide nanoparticles: an effective growth promoter of Arabidopsis plants and nano-pesticide against bacterial leaf blight pathogen in rice. Ecotoxicol. Environ. Saf. 257, 114935. https://doi.org/10.1016/j.ecoenv.2023.114935 (2023).
-
Ghodake, G., Seo, Y. D. & Lee, D. S. Hazardous phytotoxic nature of Cobalt and zinc oxide nanoparticles assessed using Allium Cepa. J. Hazard. Mater. 186, 952–955. https://doi.org/10.1016/j.jhazmat.2010.11.039 (2011).
-
Raeisi, M. et al. Magnetic Cobalt oxide nanosheets: green synthesis and in vitro cytotoxicity. Bioprocess. Biosyst Eng. 44, 1423–1432. https://doi.org/10.1007/s00449-021-02518-6 (2021).
-
Aldeen, T. S., Mohamed, H. E. A. & Maaza, M. ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids. 160, 110313. https://doi.org/10.1016/j.jpcs.2021.110313 (2022).
-
Vinay, S. P., Udayabhanu, U. & Lalithamba, H. S. Plant-mediated green synthesis of ag nanoparticles using Rauvolfia tetraphylla (L.) flower extracts: characterization, biological activities, and screening of the catalytic activity in formylation reaction. Sci. Iran. 27, 3353–3366. https://doi.org/10.24200/sci.2019.51275.2093 (2020).
-
Pawar, A., Mungole, A. & Naktode, K. Biosynthesis of CuO nanoparticles using plant extract as a precursor: characterization, antibacterial, and antioxidant activity. Nano Biomed. Eng. 15 https://doi.org/10.26599/NBE.2023.9290027 (2023). [Article ID not provided].
-
Pawar, A., Mungole, A. & Naktode, K. Biogenic copper oxide nanoparticles synthesized from whole plant extract of Nicotiana Plumbaginifolia Viv.: characterization, antibacterial, and antioxidant properties. J. Turk. Chem. Soc. A: Chem. 11, 1005–1016. https://doi.org/10.18596/jotcsa.1422924 (2024).
-
Sheikh, S. et al. Greener synthesis of copper oxide nanoparticles using Rivina humilis L. plant extract, characterization and their biological evaluation for antimicrobial and antioxidant activity. ChemSelect 9 (e202401219). https://doi.org/10.1002/slct.202401219 (2024).
-
Pandhurnekar, C. P., Pandhurnekar, H. C., Yadao, B. G., Mungole, A. J. & Mohabe, P. Recent advances in rare earth metal-doped nanomaterials and their applications in biomedical imaging techniques. AIP Conf. Proc. 2974, 020044 (2024). https://doi.org/10.1063/5.0181801
-
Mungole, A. J. et al. Biological synthesis of silver nanoparticles for antimicrobial applications: a short review. J. Adv. Sci. Res 12, 7–10 (2021).
-
Vinay, S. P., Udayabhanu, G., Chandrappa, C. P. & Chandrasekhar, N. Enhanced photocatalysis, photoluminescence, and antibacterial activities of nanosized ag: green synthesized via Rauvolfia tetraphylla (devil pepper). SN Appl. Sci. 1, 477. https://doi.org/10.1007/s42452-019-0437-0 (2019).
