Synergistic granule-biofilm PDA process enables ultra-efficient nitrogen removal in co-treating high-strength and municipal wastewater

synergistic-granule-biofilm-pda-process-enables-ultra-efficient-nitrogen-removal-in-co-treating-high-strength-and-municipal-wastewater
Synergistic granule-biofilm PDA process enables ultra-efficient nitrogen removal in co-treating high-strength and municipal wastewater

References

  1. Yu, X.-L. et al. Mapping research on carbon neutrality in WWTPs between 2001 and 2021: a scientometric and visualization analysis. Sustain. Horiz. 3, 100022 (2022).

    Google Scholar 

  2. Miao, Y. et al. Application of intermittent aeration in nitrogen removal process: development, advantages and mechanisms. Chem. Eng. J. 430, 133184 (2022).

    Google Scholar 

  3. Yang, J. & Chen, B. Energy efficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis. Appl. Energy 289, 116680 (2021).

    Google Scholar 

  4. Liu, S. C. et al. Advanced nitrogen removal of landfill leachate treatment with anammox process: a critical review. J. Water Process Eng. 58, 104756 (2024).

    Google Scholar 

  5. Kartal, B., Kuenen, J. G. & van Loosdrecht, M. C. M. Sewage treatment with anammox. Science 328, 702–703 (2010).

    Google Scholar 

  6. Feng, Y., Wang, B., Peng, Y., Li, X. & Zhang, Q. Enhanced nitrogen removal from low COD/TIN mainstream wastewater in a continuous plug-flow reactor via partial nitrification, simultaneous anammox and endogenous denitrification (PN-SAED) process. Bioresour. Technol. 345, 126539 (2022).

    Google Scholar 

  7. Li, J. et al. Highly enriched anammox within anoxic biofilms by reducing suspended sludge biomass in a real-sewage A2/O process. Water Res. 194, 116906 (2021).

    Google Scholar 

  8. Wang, Z. Y., Zheng, M., Duan, H. R., Yuan, Z. G. & Hu, S. H. A 20-year journey of partial nitritation and anammox (PN/A): from sidestream toward mainstream. Environ. Sci. Technol. 56, 7522–7531 (2022).

    Google Scholar 

  9. Yang, Q. et al. Start up of deammonification process in one single SBR system. Water Sci. Technol. 50, 1–8 (2004).

    Google Scholar 

  10. Wang, B. et al. Recovering partial nitritation in a PN/A system during mainstream wastewater treatment by reviving AOB activity after thoroughly inhibiting AOB and NOB with free nitrous acid. Environ. Int. 139, 105684 (2020).

    Google Scholar 

  11. Lackner, S. et al. Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55, 292–303 (2014).

    Google Scholar 

  12. Pérez, J., Lotti, T., Kleerebezem, R., Picioreanu, C. & van Loosdrecht, M. C. M. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: a model-based study. Water Res. 66, 208–218 (2014).

    Google Scholar 

  13. Ma, B., Qian, W., Yuan, C., Yuan, Z. & Peng, Y. Achieving mainstream nitrogen removal through coupling anammox with denitratation. Environ. Sci. Technol. 51, 8405–8413 (2017).

    Google Scholar 

  14. Du, R. et al. Synergy of partial-denitrification and anammox in continuously fed upflow sludge blanket reactor for simultaneous nitrate and ammonia removal at room temperature. Bioresour. Technol. 274, 386–394 (2019).

    Google Scholar 

  15. Zhang, W., Peng, Y., Zhang, L., Li, X. & Zhang, Q. Simultaneous partial nitritation and denitritation coupled with polished anammox for advanced nitrogen removal from low C/N domestic wastewater at low dissolved oxygen conditions. Bioresour. Technol. 305, 123045 (2020).

    Google Scholar 

  16. Ji, J. T., Peng, Y. Z., Li, X. Y., Zhang, Q. & Liu, X. P. A novel partial nitrification-synchronous anammox and endogenous partial denitrification (PN-SAEPD) process for advanced nitrogen removal from municipal wastewater at ambient temperatures. Water Res. 175, 115690 (2020).

    Google Scholar 

  17. Xiong, L. et al. Efficient nitrogen removal from real municipal wastewater and mature landfill leachate using partial nitrification-simultaneous anammox and partial denitrification process. Water Res. 251, 121088 (2024).

    Google Scholar 

  18. Ma, Y. et al. Enrichment of anammox biomass during mainstream wastewater treatment driven by achievement of partial denitrification through the addition of bio-carriers. J. Environ. Sci. 137, 181–194 (2024).

    Google Scholar 

  19. Li, Z., Xu, X., Shao, B., Zhang, S. & Yang, F. Anammox granules formation and performance in a submerged anaerobic membrane bioreactor. Chem. Eng. J. 254, 9–16 (2014).

    Google Scholar 

  20. Zhang, K. et al. A rapid and effective way to cultivate anammox granular sludge through vibration. Int. Biodeterior. Biodegrad. 143, 104704 (2019).

    Google Scholar 

  21. Kosgey, K. et al. Critical analysis of biomass retention strategies in mainstream and sidestream ANAMMOX-mediated nitrogen removal systems. Environ. Sci. Technol. 55, 9–24 (2021).

    Google Scholar 

  22. Zheng, Y. F. et al. Microbial community structure and nitrogen conversion rate of size-fractionated granules in partial denitrification and anammox reactor. J. Clean. Prod. 414, 137714 (2023).

    Google Scholar 

  23. Zhang, L. & Okabe, S. Ecological niche differentiation among anammox bacteria. Water Res. 171, 115468 (2020).

  24. Naufal, M. & Wu, J. H. Chemomixoautotrophy and stress adaptation of anammox bacteria: a review. Water Res. 257, 121663 (2024).

    Google Scholar 

  25. Zhao, Q. et al. Carbon-restricted anoxic zone as an overlooked anammox hotspot in municipal wastewater treatment plants. Environ. Sci. Technol. 57, 21767–21778 (2023).

    Google Scholar 

  26. van Niftrik, L. & Jetten, M. S. M. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol. Mol. Biol. Rev. 76, 585–596 (2012).

    Google Scholar 

  27. Kończak, B., Karcz, J. & Miksch, K. Influence of calcium, magnesium, and iron ions on aerobic granulation. Appl. Biochem. Biotechnol. 174, 2910–2918 (2014).

    Google Scholar 

  28. Ma, H. T. et al. Calcium ions affect sludge digestion performance via changing extracellular polymeric substances in anaerobic bioreactor. Biomass Bioenergy 137, 105548 (2020).

    Google Scholar 

  29. Kimkes, T. E. P. & Heinemann, M. How bacteria recognise and respond to surface contact. FEMS Microbiol. Rev. 44, 106–122 (2020).

    Google Scholar 

  30. Okabe, S. et al. Salinity tolerance and osmoadaptation strategies in four genera of anammox bacteria: Brocadia, Jettenia, Kuenenia, and Scalindua. Environ. Sci. Technol. 58, 5357–5371 (2024).

    Google Scholar 

  31. Gao, M. et al. Deciphering the role of granular activated carbon (GAC) in anammox: effects on microbial succession and communication. Water Res. 233, 119753 (2023).

    Google Scholar 

  32. Wang, B., Gong, X. & Peng, Y. Simultaneous anammox-denitrification process and its emerging extensions. Chem. Eng. J. 415, 128380 (2021).

    Google Scholar 

  33. Liu, B., Mao, Y., Bergaust, L., Bakken, L. R. & Frostegård, Å Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes. Environ. Microbiol. 15, 2816–2828 (2013).

    Google Scholar 

  34. Nagashima, S. et al. Complete genome sequence of phototrophic betaproteobacterium Rubrivivax gelatinosus IL144. J. Bacteriol. 194, 3541–3542 (2012).

    Google Scholar 

  35. Hassani, B. K. et al. Adaptation to oxygen. J. Biol. Chem. 285, 19891–19899 (2010).

    Google Scholar 

  36. Xing, Y. et al. Rapid initiation of partial denitrification with different seeding sludge and carriers: responses of wastewater treatment performance, microbial composition, and functional genes. J. Water Process Eng. 75, 107915 (2025).

  37. Zhao, Q. et al. From hybrid process to pure biofilm anammox process: suspended sludge biomass management contributing to high-level anammox enrichment in biofilms. Water Res. 236, 119959 (2023).

    Google Scholar 

  38. Wang, K. C. et al. How to provide nitrite robustly for anaerobic ammonium oxidation in mainstream nitrogen removal. Environ. Sci. Technol. 57, 21503–21526 (2023).

    Google Scholar 

  39. Ran, X. C. et al. A novel perspective on the instability of mainstream partial nitrification: the niche differentiation of nitrifying guilds. Environ. Sci. Technol. 59, 8922–8938 (2025).

    Google Scholar 

  40. Xu, D. et al. A novel SAD process: match of anammox and denitrification. Water Res. 193, 116874 (2021).

    Google Scholar 

  41. Xu, R. H. et al. Combination of sequencing batch operation and A/O process to achieve partial mainstream anammox: pilot-scale demonstration and microbial ecological mechanism. Environ. Sci. Technol. 57, 13887–13900 (2023).

    Google Scholar 

  42. Du, R. et al. Spatiotemporal assembly and immigration of heterotrophic and anammox bacteria allow a robust synergy for high-rate nitrogen removal. Environ. Sci. Technol. 57, 9075–9085 (2023).

    Google Scholar 

  43. Del Nery, V., Pozzi, E., Damianovic, M. H. R. Z., Domingues, M. R. & Zaiat, M. Granules characteristics in the vertical profile of a full-scale upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Bioresour. Technol. 99, 2018–2024 (2008).

    Google Scholar 

  44. Li, B. et al. The symbiosis of anaerobic ammonium oxidation bacteria and heterotrophic denitrification bacteria in a size-fractioned single-stage partial nitrification/anammox reactor. Biochem. Eng. J. 151, 107353 (2019).

    Google Scholar 

  45. Zhao, Y. et al. Advanced nitrogen elimination from domestic sewage through two stage partial nitrification and denitrification (PND) coupled with simultaneous anaerobic ammonia oxidation and denitrification (SAD). Bioresour. Technol. 343, 125986 (2022).

    Google Scholar 

  46. APHA. Standard Methods for the Examination of Water and Wastewater (American Public Health Association (APHA), 2012).

Download references