Synergistic potential of clindamycin hydrochloride loaded on zinc oxide nanoparticles: A novel approach to combat multidrug-resistant infections

synergistic-potential-of-clindamycin-hydrochloride-loaded-on-zinc-oxide-nanoparticles:-a-novel-approach-to-combat-multidrug-resistant-infections
Synergistic potential of clindamycin hydrochloride loaded on zinc oxide nanoparticles: A novel approach to combat multidrug-resistant infections

References

  1. Ahmed, M. E. et al. Investigation the synergistic effect of Chitosan and iron oxide nanoparticles against multidrug resistance proteus mirabilis: Inhibition of RsbA gene and insilico evaluation study. Inorg. Chem. Commun., 180,115130. (2025).

  2. Alghurabi, M. N., Mubarak, T. H., Judran, A. K. & Hasoon, B. A. Two-Stage Pulsed Laser Ablation for the Production of Ag@ TiO2 Core–Shell Nanoparticles with Enhanced antimicrobial Properties: an in Silico Study 1–26 (Plasmonics, 2025).

  3. Najm, M. A. et al. Titanium dioxide nanoparticles augment Ciprofloxacin activity via Inhibition of biofilm formation for multidrug resistance bacteria in-vitro and insilco prediction study. Sci. Rep. 15 (1), 18014 (2025).

    Google Scholar 

  4. Jawad, K. H. et al. Eco-friendly methods for synthesis of MgS@ CuS nanocomposite for overcoming multidrug resistance bacteria: insilico assessment study. J. Drug Deliv. Sci. Technol., 109 (3), 106998. (2025).

  5. Ahmed, M. E., Sulaiman, G. M., Hasoon, B. A., Khan, R. A. & Mohammed, H. A. Green synthesis and characterization of Apple peel-derived selenium nanoparticles for anti‐fungal activity and effects of MexA gene expression on efflux pumps in acinetobacter baumannii. Appl. Organomet. Chem., 39 (2), 7805-7820. (2025).

  6. Gudkov, S. V. et al. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481 (2021).

    Google Scholar 

  7. Masadeh, M. M. et al. Synergistic antibacterial effect of ZnO nanoparticles and antibiotics against Multidrug-Resistant biofilm bacteria. Curr. Drug Deliv. 22, 92–106 (2025).

    Google Scholar 

  8. Abo-Shama, U. H. et al. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist., 7(13), 351–362. (2020).

  9. Fadwa, A. O., Alkoblan, D. K., Mateen, A. & Albarag, A. M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J. Biol. Sci. 28, 928–935 (2021).

    Google Scholar 

  10. Agarwal, H., Shanmugam, V. A. & Review on Anti-Inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-Based approach. Bioorg. Chem. 94, 103423 (2020).

    Google Scholar 

  11. Mohammad, R. K. S., Homayouni Tabrizi, G., Ardalan, M., Yadamani, T. & Safavi, S. Green synthesis of zinc oxide nanoparticles and evaluation of Anti-Angiogenesis, Anti-Inflammatory and cytotoxicity properties. J. Biosci. 44, 1–9 (2019).

    Google Scholar 

  12. Al-Momani, H. et al. Al; al Haj Mahmoud, S. Anti-Bacterial activity of green synthesised silver and zinc oxide nanoparticles against Propionibacterium acnes. Pharmaceuticals 17, 255 (2024).

    Google Scholar 

  13. Tan, Y. Y. et al. Development and evaluation of topical zinc oxide nanogels formulation using dendrobium anosmum and its effect on acne vulgaris. Molecules 28, 6749 (2023).

    Google Scholar 

  14. Elhabal, S. F. et al. Enhanced Antibacterial Activity of Clindamycin Using Molecularly Imprinted Polymer Nanoparticles Loaded with Polyurethane Nanofibrous Scaffolds for the Treatment of Acne Vulgaris 16, 947 (Pharmaceutics, 2024).

  15. Huang, X., Zheng, X., Xu, Z. & Yi, C. ZnO-Based nanocarriers for drug delivery application: from passive to smart strategies. Int. J. Pharm. 534, 190–194 (2017).

    Google Scholar 

  16. Baek, S., Joo, S. H. & Toborek, M. Treatment of Antibiotic-Resistant bacteria by encapsulation of ZnO nanoparticles in an alginate biopolymer: insights into treatment mechanisms. J. Hazard. Mater. 373, 122–130 (2019).

    Google Scholar 

  17. Capsules, C. & Clindamycin Capsules 2021, 2021–2023. (2022).

  18. Bohrey, S., Chourasiya, V. & Pandey, A. Polymeric nanoparticles containing diazepam: Preparation, Optimization, Characterization, in-Vitro drug release and release kinetic study. Nano Converg. 3, 3 (2016).

    Google Scholar 

  19. Weng, J., Tong, H. H. Y. & Chow, S. F. In Vitro Release Study of the Polymeric Drug Nanoparticles: Development and Validation of a Novel Method. 12, 732 (Pharmaceutics, 2020).

  20. Modi, S. & Anderson, B. D. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic Dialysis method. Mol. Pharm. 10, 3076–3089 (2013).

    Google Scholar 

  21. Singh, S., Pandey, V. K., Tewari, R. P. & Agarwal, V. Nanoparticle based drug delivery system: advantages and applications. Indian J. Sci. Technol. 4, 177–180 (2011).

    Google Scholar 

  22. Yu, X., Pishko, M. V. & Nanoparticle-Based Biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules 12, 3205–3212 (2011).

    Google Scholar 

  23. Quinn, P. J. et al. Veterinary Microbiology and Microbial Disease; John Wiley & Sons, ; ISBN 1118251164. (2011).

  24. Kok, T., Worswich, D. & Gowans, E. in Some Serological Techniques for Microbial and Viral Infections. Pract. Med. Microbiol. 14th edn, 179–204 (eds Collee, J., Fraser, A., Marmion, B. & Simmons, A.) (Edinburgh, 1996).

  25. Institute, C. and L.S. Performance Standards for Antimicrobial Susceptibility Testing 2020.

  26. CLSI Performance Standards for Antifungal Susceptibility. Testing of yeasts M27M44S-Ed3. Clin. Lab. Stand. Inst. ,42(20),136–137. (2022).

  27. Clinical and Laboratory Standards Institute (CLSI) M07. Clinical and laboratory standards Institute methods for Dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clin. Lab. Stand. Inst.,3 (2), e91 (2018).

  28. Parvekar, P., Palaskar, J., Metgud, S., Maria, R. & Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig Dent. 7, 105–109 (2020).

    Google Scholar 

  29. Neese, F. The ORCA program system. Wiley Interdiscip Rev. Comput. Mol. Sci. 2, 73–78 (2012).

    Google Scholar 

  30. Neese, F. & Software Update The ORCA program System—Version 5.0. Wiley interdiscip. Rev. Comput. Mol. Sci. 12, e1606 (2022).

    Google Scholar 

  31. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Google Scholar 

  32. Downs, R. T. & Hall-Wallace, M. The American mineralogist crystal structure database. Am. Mineral. 88, 247–250 (2003).

    Google Scholar 

  33. Dittmer, A., Stoychev, G. L., Maganas, D., Auer, A. A. & Neese, F. Computation of NMR shielding constants for solids using an embedded cluster approach with DFT, Double-Hybrid DFT, and MP2. J. Chem. Theory Comput. 16, 6950–6967 (2020).

    Google Scholar 

  34. Izsák, R. et al. Quantum computing in pharma: A multilayer embedding approach for near future applications. J. Comput. Chem. 44, 406–421 (2023).

    Google Scholar 

  35. Shafei, R. et al. Electronic and optical properties of Eu2+-Activated Narrow-Band phosphors for Phosphor-Converted Light-Emitting diode applications: insights from a theoretical spectroscopy perspective. J. Am. Chem. Soc. 144, 8038–8053 (2022).

    Google Scholar 

  36. Shafei, R. et al. Theoretical spectroscopy study of the photoluminescence properties of narrow band Eu 2+-Doped phosphors containing multiple candidate doping Centers. Prediction of an unprecedented narrow band red phosphor. Phys. Chem. Chem. Phys. 26, 6277–6291 (2024).

    Google Scholar 

  37. Bergner, A., Dolg, M., Küchle, W., Stoll, H. & Preuß, H. Ab initio Energy-Adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 80, 1431–1441 (1993).

    Google Scholar 

  38. Guo, Y. et al. Linear scaling perturbative triples correction approximations for Open-Shell Domain-Based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD (T/T)]. J. Chem. Phys. 152(2), e024116 (2020).

  39. Neese, F., Wennmohs, F. & Hansen, A. Efficient and accurate local approximations to Coupled-Electron pair approaches: an attempt to revive the pair natural orbital method. J. Chem. Phys. 130(11), e114108 (2009).

  40. Helmich-Paris, B., de Souza, B., Neese, F. & Izsák, R. An improved chain of spheres for exchange algorithm. J. Chem. Phys. 155(10), e104109 (2021).

  41. Garcia-Ratés, M. & Neese, F. Effect of the solute cavity on the solvation energy and its derivatives within the framework of the Gaussian charge scheme. J. Comput. Chem. 41, 922–939 (2020).

    Google Scholar 

  42. Shafei, R. et al. Theoretical spectroscopy for unraveling the intensity mechanism of the optical and photoluminescent spectra of chiral re (I) transition metal complexes. J. Chem. Phys. 159(8), e084102 (2023).

  43. Pochapski, D. J., dos Carvalho, C., Leite, G. W., Pulcinelli, S. H. & Santilli, C. V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 37, 13379–13389 (2021).

  44. Li, L. C. & Shi, Y. Zeta potential. Encycl Pharm. Sci. Technol., 4th Ed., 3888–3901 (2013).

  45. Gregory, J. & O’Melia, C. R. Fundamentals of flocculation. Crit. Rev. Environ. Sci. Technol. 19, 185–230 (1989).

    Google Scholar 

  46. Wu, D., Si, M., Xue, H. Y. & Wong, H. L. Nanomedicine applications in the treatment of breast cancer: current state of the Art. Int. J. Nanomed., 12, 5879–5892. (2017).

  47. Bahrami, B. et al. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 190, 64–83 (2017).

    Google Scholar 

  48. Wang, N., Cheng, X., Li, N., Wang, H. & Chen, H. Nanocarriers and their loading strategies. Adv. Healthc. Mater. 8, 1801002 (2019).

    Google Scholar 

  49. Shahbazi, M. A. & Hamidi, M. The impact of Preparation parameters on typical attributes of Chitosan-Heparin nanohydrogels: particle Size, loading Efficiency, and drug release. Drug Dev. Ind. Pharm. 39, 1774–1782 (2013).

    Google Scholar 

  50. Lee, J. H. & Yeo, Y. Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 125, 75–84 (2015).

    Google Scholar 

  51. Dang, Y. & Guan, J. Nanoparticle-Based drug delivery systems for cancer therapy. Smart Mater. Med. 1, 10–19 (2020).

    Google Scholar 

  52. Elumalai, K., Srinivasan, S. & Shanmugam, A. Review of the efficacy of Nanoparticle-Based drug delivery systems for cancer treatment. Biomed. Technol. 5, 109–122 (2024).

    Google Scholar 

  53. Patel, P. et al. Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer, ISBN 3030061140. (2019).

  54. Banerjee, A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. Role of nanoparticle Size, shape and surface chemistry in oral drug delivery. J. Control Release. 238, 176–185 (2016).

    Google Scholar 

  55. Aisida, S. O. et al. Biogenic synthesis of zinc oxide nanorods for biomedical applications and photodegradation of Rhodamine B. Mater. Today Commun. 33, 104660 (2022).

    Google Scholar 

  56. Benitez-Salazar, M. I. et al. Chemical synthesis versus green synthesis to obtain ZnO powders: evaluation of the antibacterial capacity of the nanoparticles obtained by the chemical method. J. Environ. Chem. Eng. 9, 106544 (2021).

    Google Scholar 

  57. Saha, K. et al. Ameliorative effects of Clindamycin-Nanoceria conjugate: A ROS responsive smart drug delivery system for diabetic wound healing study. J. Trace Elem. Med. Biol. 75, 127107 (2023).

    Google Scholar 

  58. Zamani, M. et al. Synthesis of Polymer-Clindamycin conjugates through Lipase-Catalyzed esterification and RAFT polymerization. Polym. (Guildf), 317, e127965. (2024).

  59. Subba, B. et al. Antifungal Activity of Zinc Oxide Nanoparticles (ZnO NPs) on Fusarium Equiseti Phytopathogen Isolated from Tomato Plant in Nepal. Heliyon 10. (2024).

  60. Hjiri, M. et al. Ammonia gas sensors based on undoped and Ca-Doped ZnO nanoparticles. RSC Adv. 14, 5001–5011 (2024).

    Google Scholar 

  61. Sastry, S. V., Reddy, I. K. & Khan, M. A. Atenolol Gastrointestinal therapeutic system: optimization of formulation variables using response surface methodology. J. Control Release. 45, 121–130 (1997).

    Google Scholar 

  62. Li, P. & Zhao, L. Developing early formulations: practice and perspective. Int. J. Pharm. 341, 1–19 (2007).

    Google Scholar 

  63. Xin, Y., Yin, M., Zhao, L., Meng, F. & Luo, L. Recent progress on Nanoparticle-Based drug delivery systems for cancer therapy. Cancer Biol. Med. 14, 228 (2017).

    Google Scholar 

  64. Moku, G., Gopalsamuthiram, V. R., Hoye, T. R. & Panyam, J. Surface modification of nanoparticles: methods and applications. Surf. Modif. Polym. Methods Appl., 32, 317–346. (2019).

  65. Ding, C. & Li, Z. A. Review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C. 76, 1440–1453 (2017).

    Google Scholar 

  66. Dziadkowiec, J., Mansa, R., Quintela, A., Rocha, F. & Detellier, C. Preparation, characterization and application in controlled release of Ibuprofen-Loaded Guar Gum/Montmorillonite bionanocomposites. Appl. Clay Sci. 135, 52–63 (2017).

    Google Scholar 

  67. Arifin, D. Y., Lee, L. Y. & Wang, C. H. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv. Drug Deliv Rev. 58, 1274–1325 (2006).

    Google Scholar 

  68. Organization, W. H. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization, ISBN 924006270X. (2022).

  69. Wang, S. et al. Antibiotic resistance spectrum of E. Coli strains from different samples and Age-Grouped patients: A 10-Year retrospective study. BMJ Open. 13, e067490 (2023).

    Google Scholar 

  70. Bhattarai, R. K., Basnet, H. B., Dhakal, I. P. & Devkota, B. Antimicrobial resistance of avian pathogenic Escherichia coli isolated from Broiler, Layer, and breeder chickens. Vet. World. 17, 480 (2024).

    Google Scholar 

  71. Kasanga, M. et al. Antimicrobial resistance profiles of Escherichia coli isolated from clinical and environmental samples: findings and implications. JAC-Antimicrobial Resist. 6, dlae061 (2024).

    Google Scholar 

  72. Congdon, S. T. et al. Prevalence and antibiotic resistance of Staphylococcus aureus associated with a College-Aged cohort: Life-Style factors that contribute to nasal carriage. Front. Cell. Infect. Microbiol. 13, 1195758 (2023).

    Google Scholar 

  73. Tumbarello, M. et al. Infections caused by KPC-Producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 70, 2133–2143 (2015).

    Google Scholar 

  74. Aytaç, Ö. Antibiotic resistance rates of Klebsiella pneumoniae strains isolated from urine cultures. Northwest. Med. J. 4, 64–69 (2024).

    Google Scholar 

  75. An, N., Hong, L. T., Hung, D. V. & Kien, H. T. Van; Hai, L.H. long; Luong, V.H.; Vinh, N.T.H.; Hoa, P.Q.; Hung, L. Van; Son, N.T.; Hong, L.T.; Hung, D.V.; Kien, H.T. Antimicrobial Resistance Patterns of Staphylococcus Aureus Isolated at a General Hospital in Vietnam between 2014 and 2021. Infect. Drug Resist. 259–273. (2024).

  76. Rippa, A. et al. Murru, N. Antimicrobial resistance of Listeria monocytogenes strains isolated in food and food-Processing environments in Italy. Antibiotics 13, 525 (2024).

    Google Scholar 

  77. El-Ansary, M. & El-Ansary, A. R. Resistance of oral Candida albicans infection to fluconazole and Nystatin among healthy persons after treatment with Azithromycin and hydroxychloroquine to treat suspected SARS-CoV-2 viral infection. Egypt. J. Med. Microbiol. 32, 55–60 (2023).

    Google Scholar 

  78. Naylor, N. R. et al. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control. 7, 1–17 (2018).

    Google Scholar 

  79. Eleraky, N. E., Allam, A., Hassan, S. B. & Omar, M. M. Nanomedicine Fight against antibacterial Resistance: an Overview of the Recent Pharmaceutical Innovations. 12, 142 (Pharmaceutics, 2020).

  80. Sánchez-López, E. et al. Metal-Based Nanoparticles as antimicrobial Agents: an Overview 10, 292 (Nanomaterials, 2020).

  81. Azhdarzadeh, M., Lotfipour, F., Zakeri-Milani, P., Mohammadi, G. & Valizadeh, H. Anti-Bacterial performance of Azithromycin nanoparticles as colloidal drug delivery system against different Gram-Negative and Gram-Positive bacteria. Adv. Pharm. Bull. 2, 17 (2012).

    Google Scholar 

  82. Rauta, P. R., Das, N. M., Nayak, D., Ashe, S. & Nayak, B. Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery. IET Nanobiotechnol. 10, 254–261 (2016).

    Google Scholar 

  83. Abd, E. L., Tawab, A., Abo El-Roos, N., El-Gendy, A. A. M. & -; ; Effect of zinc oxide nanoparticles on Staphylococcus aureusisolated from CowsʼMastitic milk. Benha Vet. Med. J. 35, 30–41 (2018).

    Google Scholar 

  84. Yaqub, A. et al. Fish health and resistance to Staphylococcus aureus of nile tilapia (Oreochromis Niloticus) fed diet supplemented with zinc oxide nanoparticles and zinc acetate. Biol. Trace Elem. Res. 201, 4912–4925 (2023).

    Google Scholar 

  85. Tălăpan, D., Sandu, A. M. & Rafila, A. Antimicrobial resistance of Staphylococcus aureus isolated between 2017 and 2022 from infections at a tertiary care hospital in Romania. Antibiotics 12, 974 (2023).

    Google Scholar 

  86. Kakian, F., Arasteh, N., Mirzaei, E. & Motamedifar, M. Study of MIC of silver and zinc oxide Nanoparticles, strong and Cost-Effective antibacterial against Biofilm-Producing acinetobacter baumannii in Shiraz, Southwest of Iran. BMC Infect. Dis. 24, 593 (2024).

    Google Scholar 

  87. Fu, G., Vary, P. S. & Lin, C. T. Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B. 109, 8889–8898 (2005).

    Google Scholar 

  88. Akbar, N., Aslam, Z., Siddiqui, R., Shah, M. R. & Khan, N. A. Zinc oxide nanoparticles conjugated with Clinically-Approved medicines as potential antibacterial molecules. Amb Express. 11, 1–16 (2021).

    Google Scholar 

  89. Mirhosseini, M. & Firouzabadi, F. B. Antibacterial activity of zinc oxide nanoparticle suspensions on Food-borne pathogens. Int. J. Dairy. Technol. 66, 291–295 (2013).

    Google Scholar 

  90. El-Waseif, A. Cytotoxicity and antimicrobial activity of naturally and chemically synthesized zinc oxide nanoparticles. J. Arab. Soc. Med. Res. 14, 42 (2019).

    Google Scholar 

  91. Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett. 7, 219–242 (2015).

    Google Scholar 

  92. Lomakin, I. B., Devarkar, S. C., Patel, S., Grada, A. & Bunick, C. G. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a Two-Site mechanism. Nucleic Acids Res. 51, 2915–2930 (2023).

    Google Scholar 

  93. Khalil, M. A. et al. Synergistic antibacterial and antibiofilm effects of clindamycin and zinc oxide nanoparticles against pathogenic oral Bacillus species. Pathog (Basel Switzerland). 14 https://doi.org/10.3390/pathogens14020138 (2025).

  94. Konduru, N. V. et al. Distribution and clearance of Tracheally-Instilled and gavaged uncoated or Silica-Coated zinc oxide Nanoparticles. Part. Fibre Toxicol. 11, 44. https://doi.org/10.1186/s12989-014-0044-6 (2014).

    Google Scholar 

  95. Barza, M., Goldstein, J. A., Kane, A., Feingold, D. S. & Pochi, P. E. Systemic absorption of clindamycin hydrochloride after topical application. J. Am. Acad. Dermatol. 7, 208–214. https://doi.org/10.1016/S0190-9622(82)70109-4 (1982).

    Google Scholar 

  96. Bistoni, G. Finding chemical concepts in the hilbert space: coupled cluster analyses of noncovalent interactions. Wiley Interdiscip Rev. Comput. Mol. Sci. 10, e1442 (2020).

    Google Scholar 

  97. Shafei, R. et al. A combined experimental and computational study on the broadening mechanism of the luminescence in Narrow-Band Eu2+-Doped phosphors. J. Phys. Chem. C., 129(4), 1952–1968, (2025).

  98. Yepes, D., Neese, F., List, B. & Bistoni, G. Unveiling the delicate balance of steric and dispersion interactions in organocatalysis using High-Level computational methods. J. Am. Chem. Soc. 142, 3613–3625 (2020).

    Google Scholar 

  99. Altun, A., Izsák, R. & Bistoni, G. Local energy decomposition of Coupled-cluster interaction energies: Interpretation, Benchmarks, and comparison with Symmetry‐adapted perturbation theory. Int. J. Quantum Chem. 121, e26339 (2021).

    Google Scholar 

  100. Ahmed, H., Böhmdorfer, M., Jäger, W. & Zeitlinger, M. Insights into interspecies protein binding variability using clindamycin as an example. J. Antimicrob. Chemother. 80(2), 363-371, (2024).

  101. Mikayilov, E., Zeynalov, N., Taghiyev, D. & Taghiyev, S. Role of computational modeling in the design and development of Nanotechnology-Based drug delivery systems. Chem. Biochem. Eng. Q. 38, 97–110 (2024).

    Google Scholar 

Download references