Synthesis of silica nanoparticles from rice husk to determine insecticidal properties against Glyphodes pyloalis walker (Lepidoptera: Crambidae)

synthesis-of-silica-nanoparticles-from-rice-husk-to-determine-insecticidal-properties-against-glyphodes-pyloalis-walker-(lepidoptera:-crambidae)
Synthesis of silica nanoparticles from rice husk to determine insecticidal properties against Glyphodes pyloalis walker (Lepidoptera: Crambidae)

References

  1. Epstein, E. Silicon: its manifold roles in plants. Ann. Appl. Biol. 155, 155–160 (2009).

    Google Scholar 

  2. Pooniyan, S. et al. Silicon status in soils and their benefits in crop production. Commun. Soil. Sci. Plant. Anal. 54, 1887–1895 (2023).

    Google Scholar 

  3. Saw, G., Nagdev, P., Jeer, M. & Murali-Baskaran, R. K. Silica nanoparticles mediated insect pest management. Pestic Biochem. Physiol. 105524 (2023).

  4. Jansomboon, W., Boonmaloet, K., Sukaros, S. & Prapainainar, P. Rice hull micro and nanosilica: synthesis and characterization. Key Eng. Mater. 718, 77–80 (2017).

    Google Scholar 

  5. Babu, R. H., Yugandhar, P. & Savithramma, N. Synthesis, characterization and antimicrobial studies of Biosilica nanoparticles prepared from cynodon dactylon L.: a green approach. Bull. Mater. Sci. 41, 1–8 (2018).

    Google Scholar 

  6. Sethy, N. K., Arif, Z., Mishra, P. K. & Kumar, P. Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties. J. Polym. Eng. 39, 679–687 (2019).

    Google Scholar 

  7. Yusaidi, N., Abdullah, S. & Zarib, N. Structural analysis of silica extract from banana stems via acid leaching under different reaction time. Int. J. Eng. Adv. Technol. 9, 5858–5862 (2019).

    Google Scholar 

  8. Shoaib, A. et al. Entomotoxic effect of silicon dioxide nanoparticles on plutella Xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol. Environ. Chem. 100, 80–91 (2018).

    Google Scholar 

  9. El-Bendary, H. M. & El-Helaly, A. A. First record nanotechnology in agriculture: silica nanoparticles a potential new insecticide for pest control. Appl. Sci. Rep. 4, 241–246 (2013).

    Google Scholar 

  10. Debnath, N. et al. Entomotoxic effect of silica nanoparticles against sitophilus oryzae (L). J. Pest Sci. 84, 99–105 (2011).

    Google Scholar 

  11. Rouhani, M., Samih, M. A. & Kalantari, S. Insecticidal effect of silica and silver nanoparticles on the cow pea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J. Entomol. Res. 16, 297–305 (2013).

    Google Scholar 

  12. Rouhani, M. et al. Synthesis and entomotoxicity assay of zinc and silica nanoparticles against sitophilus granarius (Coleoptera: Curculionidae). J. Plant. Prot. Res. 54, 26–31 (2019).

    Google Scholar 

  13. El-Helaly, A. A., El-Bendary, H. M., Abdel-Wahab, A. S., El-Sheikh, M. A. K. & Elnagar, S. The silica-nanoparticles treatment of squash foliage and survival and development of spodoptera littoralis (Bosid.) larvae. Pest Contr. 5, 6 (2016).

    Google Scholar 

  14. Ayoub, H. A., Khairy, M., Rashwan, F. A. & Abdel-Hafez, H. F. Synthesis and characterization of silica nanostructures for cotton leaf worm control. J. Nanostruct. Chem. 7, 91–100 (2017).

    Google Scholar 

  15. Bilal, M. et al. Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of plutella Xylostella L. with decreased detoxification enzymes activities. Pest Manag Sci. 76, 3749–3758 (2020).

    Google Scholar 

  16. Thabet, A. F. et al. Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Sci. Rep. 11, 14484 (2021).

    Google Scholar 

  17. Wang, Z. et al. Nanosilicon enhances maize resistance against Oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Sci. Total Environ. 778, 146378 (2021).

    Google Scholar 

  18. Jafari Khaljiri, Y., Rezaei, V. & Zargarpour Kazemian, P. Biological study of glyphodes pyloalis walker (Lepidoptera: Pyralidae), a new pest of mulberry in Guilan province, Iran. In Seventeenth Iranian Congress of Plant Protection, Tehran University, Tehran, Iran, 257 (2006).

    Google Scholar 

  19. Moallem, Z., Karimi-Malati, A., Sahragard, A. & Zibaee, A. Modeling temperature-dependent development of glyphodes pyloalis (Lepidoptera: Pyralidae). J. Insect Sci. 17, 1–8 (2017).

    Google Scholar 

  20. Imtiyaz, A. et al. Studies on the susceptibility and cross infectivity of mulberry pest glyphodes pyloalis walker to silkworm, Bombyx Mori L. J. Entomol. Zool. Stud. 9, 962–965 (2021).

    Google Scholar 

  21. Nguyen, H. X., Dao, N. T. T., Nguyen, H. T. T. & Le, A. Q. T. Nanosilica synthesis from rice husk and application for soaking seeds. IOP Conf. Ser. : Earth Environ. Sci. 266, 012007 (2019).

    Google Scholar 

  22. Ding, J. H. et al. Characterization and functional analysis of Hsp70 and Hsp90 gene families in glyphodes pyloalis walker (Lepidoptera: Pyralidae). Front. Physiol. 12, 753914 (2021).

    Google Scholar 

  23. Metwally, S. A., Abd-Elaziz, M. A. A., El-Sherif, S. I. & Ahmed, S. S. Effect of silver and silica nanoparticles on the larvae of Pink stem borer Sesamia cretica Lederer, 1857 (Lepidoptera: Noctuidae) and maize plants Zea Mays Linnaeus, 1753. Pol. J. Entomol. 90, 86–102 (2021).

    Google Scholar 

  24. Waldbauer, G. P. The consumption and utilization of foods by insects. Adv. Insect Physiol. 5, 229–288 (1986).

    Google Scholar 

  25. Yousefi-Lardeh, L. & Zibaee, A. Nano-formulation of Beauvericin shows insecticidal properties against glyphodes pyloalis walker. Biocatal. Agric. Biotechnol. 59, 103264 (2024).

    Google Scholar 

  26. Ferreira, C. & Terra, W. R. Physical and kinetic properties of a plasma-membrane-bound β-D-glucosidase (cellobiase) from midgut cells of an insect (Rhynchosciara Americana larva). Biochem. J. 213, 43–51 (1983).

    Google Scholar 

  27. Oppert, B. et al. Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. 134C, 481–490 (2003).

    Google Scholar 

  28. Bernfeld, P. Amylases, α and β. Methods Enzymol. 1, 149–158 (1955).

    Google Scholar 

  29. Tsujita, T., Ninomiya, H. & Okuda, H. p-Nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. J. Lipid Res. 30, 997–1004 (1989).

    Google Scholar 

  30. Wang, Y., Oberley, L. W. & Murhammer, D. W. Evidence of oxidative stress following the viral infection of two lepidopteran insect cell lines. Free Radic Biol. Med. 31, 1448–1455 (2001).

    Google Scholar 

  31. McCord, J. M. & Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).

    Google Scholar 

  32. Addy, S. & Goodman, R. Polyphenol oxidase and peroxidase activity in Apple leaves inoculated with a virulent or an avirulent strain of erwinia Amylovora. Indian Phytopathol. 25, 575–579 (1972).

    Google Scholar 

  33. Asada, K. Chloroplasts: formation of active oxygen and its scavenging. Methods Enzymol. 105, 422–429 (1984).

    Google Scholar 

  34. Balinsky, D. & Bernstein, R. E. The purification and properties of glucose-6-phosphate dehydrogenase from human erythrocytes. Biochim. Biophys. Acta. 67, 313–315 (1963).

    Google Scholar 

  35. Bradford, M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Google Scholar 

  36. Agi, A. et al. Synthesis and application of rice husk silica nanoparticles for chemical enhanced oil recovery. J. Mater. Res. Technol. 9, 13054–13066 (2023).

    Google Scholar 

  37. Zhang, Z. et al. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 6, 5197–5203 (2015).

    Google Scholar 

  38. El-Samahy, M. F. M., El-Ghobary, A. M. & Khafagy, I. F. Using silica nanoparticles and Neemoil extract as new approaches to control Tuta absoluta (Meyrick) in tomato under field conditions. Int. J. Plant. Soil. Sci. 3, 1355–1365 (2014).

    Google Scholar 

  39. Idris, I., Naddaf, M., Harmalani, H., Alshater, R. & Alsafadi, R. Effect of nano-silica extracted from two different plant sources on survival and development of Phthorimaea opercullela (Zeller) larvae. Hellenic plant prot. J 16, 59–66 (2023).

    Google Scholar 

  40. Mommaerts, V. et al. Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6, 554–561 (2012).

    Google Scholar 

  41. Santo-Orihuela, P. L., Foglia, M. L., Targovnik, A. M., Miranda, M. V. & Desimone, M. F. Nanotoxicological effects of SiO2 nanoparticles on spodoptera Frugiperda Sf9 cells. Curr. Pharm. Biotechnol. 17, 465–470 (2016).

    Google Scholar 

  42. Dubovskiy, I. M. et al. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of galleria Mellonella L. larvae (Lepidoptera, Pyralidae). Comp. Biochem. Physiol. 148C, 1–5 (2008).

    Google Scholar 

  43. Maritim, A. C., Sanders, A. & Watkins, J. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17, 24–38 (2003).

    Google Scholar 

Download references