References
-
Epstein, E. Silicon: its manifold roles in plants. Ann. Appl. Biol. 155, 155–160 (2009).
-
Pooniyan, S. et al. Silicon status in soils and their benefits in crop production. Commun. Soil. Sci. Plant. Anal. 54, 1887–1895 (2023).
-
Saw, G., Nagdev, P., Jeer, M. & Murali-Baskaran, R. K. Silica nanoparticles mediated insect pest management. Pestic Biochem. Physiol. 105524 (2023).
-
Jansomboon, W., Boonmaloet, K., Sukaros, S. & Prapainainar, P. Rice hull micro and nanosilica: synthesis and characterization. Key Eng. Mater. 718, 77–80 (2017).
-
Babu, R. H., Yugandhar, P. & Savithramma, N. Synthesis, characterization and antimicrobial studies of Biosilica nanoparticles prepared from cynodon dactylon L.: a green approach. Bull. Mater. Sci. 41, 1–8 (2018).
-
Sethy, N. K., Arif, Z., Mishra, P. K. & Kumar, P. Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties. J. Polym. Eng. 39, 679–687 (2019).
-
Yusaidi, N., Abdullah, S. & Zarib, N. Structural analysis of silica extract from banana stems via acid leaching under different reaction time. Int. J. Eng. Adv. Technol. 9, 5858–5862 (2019).
-
Shoaib, A. et al. Entomotoxic effect of silicon dioxide nanoparticles on plutella Xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol. Environ. Chem. 100, 80–91 (2018).
-
El-Bendary, H. M. & El-Helaly, A. A. First record nanotechnology in agriculture: silica nanoparticles a potential new insecticide for pest control. Appl. Sci. Rep. 4, 241–246 (2013).
-
Debnath, N. et al. Entomotoxic effect of silica nanoparticles against sitophilus oryzae (L). J. Pest Sci. 84, 99–105 (2011).
-
Rouhani, M., Samih, M. A. & Kalantari, S. Insecticidal effect of silica and silver nanoparticles on the cow pea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J. Entomol. Res. 16, 297–305 (2013).
-
Rouhani, M. et al. Synthesis and entomotoxicity assay of zinc and silica nanoparticles against sitophilus granarius (Coleoptera: Curculionidae). J. Plant. Prot. Res. 54, 26–31 (2019).
-
El-Helaly, A. A., El-Bendary, H. M., Abdel-Wahab, A. S., El-Sheikh, M. A. K. & Elnagar, S. The silica-nanoparticles treatment of squash foliage and survival and development of spodoptera littoralis (Bosid.) larvae. Pest Contr. 5, 6 (2016).
-
Ayoub, H. A., Khairy, M., Rashwan, F. A. & Abdel-Hafez, H. F. Synthesis and characterization of silica nanostructures for cotton leaf worm control. J. Nanostruct. Chem. 7, 91–100 (2017).
-
Bilal, M. et al. Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of plutella Xylostella L. with decreased detoxification enzymes activities. Pest Manag Sci. 76, 3749–3758 (2020).
-
Thabet, A. F. et al. Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Sci. Rep. 11, 14484 (2021).
-
Wang, Z. et al. Nanosilicon enhances maize resistance against Oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Sci. Total Environ. 778, 146378 (2021).
-
Jafari Khaljiri, Y., Rezaei, V. & Zargarpour Kazemian, P. Biological study of glyphodes pyloalis walker (Lepidoptera: Pyralidae), a new pest of mulberry in Guilan province, Iran. In Seventeenth Iranian Congress of Plant Protection, Tehran University, Tehran, Iran, 257 (2006).
-
Moallem, Z., Karimi-Malati, A., Sahragard, A. & Zibaee, A. Modeling temperature-dependent development of glyphodes pyloalis (Lepidoptera: Pyralidae). J. Insect Sci. 17, 1–8 (2017).
-
Imtiyaz, A. et al. Studies on the susceptibility and cross infectivity of mulberry pest glyphodes pyloalis walker to silkworm, Bombyx Mori L. J. Entomol. Zool. Stud. 9, 962–965 (2021).
-
Nguyen, H. X., Dao, N. T. T., Nguyen, H. T. T. & Le, A. Q. T. Nanosilica synthesis from rice husk and application for soaking seeds. IOP Conf. Ser. : Earth Environ. Sci. 266, 012007 (2019).
-
Ding, J. H. et al. Characterization and functional analysis of Hsp70 and Hsp90 gene families in glyphodes pyloalis walker (Lepidoptera: Pyralidae). Front. Physiol. 12, 753914 (2021).
-
Metwally, S. A., Abd-Elaziz, M. A. A., El-Sherif, S. I. & Ahmed, S. S. Effect of silver and silica nanoparticles on the larvae of Pink stem borer Sesamia cretica Lederer, 1857 (Lepidoptera: Noctuidae) and maize plants Zea Mays Linnaeus, 1753. Pol. J. Entomol. 90, 86–102 (2021).
-
Waldbauer, G. P. The consumption and utilization of foods by insects. Adv. Insect Physiol. 5, 229–288 (1986).
-
Yousefi-Lardeh, L. & Zibaee, A. Nano-formulation of Beauvericin shows insecticidal properties against glyphodes pyloalis walker. Biocatal. Agric. Biotechnol. 59, 103264 (2024).
-
Ferreira, C. & Terra, W. R. Physical and kinetic properties of a plasma-membrane-bound β-D-glucosidase (cellobiase) from midgut cells of an insect (Rhynchosciara Americana larva). Biochem. J. 213, 43–51 (1983).
-
Oppert, B. et al. Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. 134C, 481–490 (2003).
-
Bernfeld, P. Amylases, α and β. Methods Enzymol. 1, 149–158 (1955).
-
Tsujita, T., Ninomiya, H. & Okuda, H. p-Nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. J. Lipid Res. 30, 997–1004 (1989).
-
Wang, Y., Oberley, L. W. & Murhammer, D. W. Evidence of oxidative stress following the viral infection of two lepidopteran insect cell lines. Free Radic Biol. Med. 31, 1448–1455 (2001).
-
McCord, J. M. & Fridovich, I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).
-
Addy, S. & Goodman, R. Polyphenol oxidase and peroxidase activity in Apple leaves inoculated with a virulent or an avirulent strain of erwinia Amylovora. Indian Phytopathol. 25, 575–579 (1972).
-
Asada, K. Chloroplasts: formation of active oxygen and its scavenging. Methods Enzymol. 105, 422–429 (1984).
-
Balinsky, D. & Bernstein, R. E. The purification and properties of glucose-6-phosphate dehydrogenase from human erythrocytes. Biochim. Biophys. Acta. 67, 313–315 (1963).
-
Bradford, M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
-
Agi, A. et al. Synthesis and application of rice husk silica nanoparticles for chemical enhanced oil recovery. J. Mater. Res. Technol. 9, 13054–13066 (2023).
-
Zhang, Z. et al. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 6, 5197–5203 (2015).
-
El-Samahy, M. F. M., El-Ghobary, A. M. & Khafagy, I. F. Using silica nanoparticles and Neemoil extract as new approaches to control Tuta absoluta (Meyrick) in tomato under field conditions. Int. J. Plant. Soil. Sci. 3, 1355–1365 (2014).
-
Idris, I., Naddaf, M., Harmalani, H., Alshater, R. & Alsafadi, R. Effect of nano-silica extracted from two different plant sources on survival and development of Phthorimaea opercullela (Zeller) larvae. Hellenic plant prot. J 16, 59–66 (2023).
-
Mommaerts, V. et al. Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6, 554–561 (2012).
-
Santo-Orihuela, P. L., Foglia, M. L., Targovnik, A. M., Miranda, M. V. & Desimone, M. F. Nanotoxicological effects of SiO2 nanoparticles on spodoptera Frugiperda Sf9 cells. Curr. Pharm. Biotechnol. 17, 465–470 (2016).
-
Dubovskiy, I. M. et al. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of galleria Mellonella L. larvae (Lepidoptera, Pyralidae). Comp. Biochem. Physiol. 148C, 1–5 (2008).
-
Maritim, A. C., Sanders, A. & Watkins, J. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17, 24–38 (2003).
