References
-
Qamar, Z., Haji Abdul Rahim, Z. B., Chew, H. P. & Fatima, T. Influence of trace elements on dental enamel properties: A review. J. Pak. Med. Assoc. 67, 116–120 (2017).
-
Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993. https://doi.org/10.1152/physrev.00030.2016 (2017).
-
Roveri, N. & Iafisco, M. Evolving application of biomimetic nanostructured hydroxyapatite. Nanotechnol. Sci. Appl. 3, 107–125. https://doi.org/10.2147/nsa.S9038 (2010).
-
Frazier, P. D., Little, M. F. & Casciani, F. S. X-ray diffraction analysis of human enamel containing different amounts of fluoride. Arch. Oral Biol. 12, 35–42. https://doi.org/10.1016/0003-9969(67)90139-2 (1967).
-
Navia, J. M. Prevention of dental caries: agents which increase tooth resistance to dental caries. Int Dent J 22, 427–440 (1972).
-
Curzon, M. E. & Crocker, D. C. Relationships of trace elements in human tooth enamel to dental caries. Arch. Oral Biol. 23, 647–653. https://doi.org/10.1016/0003-9969(78)90189-9 (1978).
-
Chawhuaveang, D. D. et al. Acquired salivary pellicle and oral diseases: A literature review. J. Dent. Sci. 16, 523–529. https://doi.org/10.1016/j.jds.2020.10.007 (2021).
-
Hannig, M. & Joiner, A. The structure, function and properties of the acquired pellicle. Monogr. Oral Sci. 19, 29–64. https://doi.org/10.1159/000090585 (2006).
-
Trautmann, S. et al. Deep Proteomic insights into the individual short-term pellicle formation on enamel-an in situ pilot study. Proteomics Clin. Appl. 14, e1900090. https://doi.org/10.1002/prca.201900090 (2020).
-
Güth-Thiel, S. et al. Comprehensive measurements of salivary pellicle thickness formed at different intraoral sites on Si wafers and bovine enamel. Colloids Surf. B 174, 246–251. https://doi.org/10.1016/j.colsurfb.2018 (2019).
-
Hannig, C. & Hannig, M. The oral cavity-a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin. Oral Invest. 13, 123–139. https://doi.org/10.1007/s00784-008-0243-3 (2009).
-
Siqueira, W., Custodio, W. & McDonald, E. New insights into the composition and functions of the acquired enamel pellicle. J. Dent. Res. 91, 1110–1118. https://doi.org/10.1177/0022034512462578 (2012).
-
Willems, H. M., Xu, Z. & Peters, B. M. Polymicrobial biofilm studies: From basic science to biofilm control. Curr. Oral Health Rep. 3, 36–44. https://doi.org/10.1007/s40496-016-0078-y (2016).
-
Kilian, M. et al. The oral microbiome—An update for oral healthcare professionals. Braz. Dent. J. 221, 657–666. https://doi.org/10.1038/sj.bdj.2016.865 (2016).
-
Verma, D., Garg, P. K. & Dubey, A. K. Insights into the human oral microbiome. Arch. Microbiol. 200, 525–540. https://doi.org/10.1007/s00203-018-1505-3 (2018).
-
Larsen, T. & Fiehn, N. E. Dental biofilm infections—An update. Acta Pathol. Microbiol. Scand. 125, 376–384. https://doi.org/10.1111/apm.12688 (2017).
-
Pitts, N. et al. Dental caries. Nat. Rev. Dis. Primers. 3, 17030. https://doi.org/10.1038/nrdp.2017.30 (2017).
-
McKay, F. S. Mass control of dental caries through the use of domestic water supplies containing fluorine. Am J Public Health Nations Health 38, 828–832. https://doi.org/10.2105/ajph.38.6.828 (1948).
-
Hertel, S. et al. Effect of Inula viscosa on the pellicle’s protective properties and initial bioadhesion in-situ. Arch. Oral Biol. 71, 87–96. https://doi.org/10.1016/j.archoralbio.2016.07.006 (2016).
-
Hertel, S. et al. Effect of tannic acid on the protective properties of the in situ formed pellicle. Caries Res. 51, 34–45. https://doi.org/10.1159/000451036 (2017).
-
Kouidhi, B., Al Qurashi, Y. M. & Chaieb, K. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb. Pathog. 80, 39–49. https://doi.org/10.1016/j.micpath.2015.02.007 (2015).
-
Schestakow, A. & Hannig, M. Effects of experimental agents containing tannic acid or chitosan on the bacterial biofilm formation in situ. Biomolecules https://doi.org/10.3390/biom10091315 (2020).
-
Nakamichi, I., Iwaku, M. & Fusayama, T. Bovine teeth as possible substitutes in the adhesion test. J. Dent. Res. 62, 1076–1081. https://doi.org/10.1177/00220345830620101501 (1983).
-
Reis, A. F., Giannini, M., Kavaguchi, A., Soares, C. J. & Line, S. R. Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth. J. Adhes. Dent. 6, 117–121 (2004).
-
Laurance-Young, P. et al. A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. J. Dent. 39, 266–272. https://doi.org/10.1016/j.jdent.2011.01.008 (2011).
-
Ayoub, H. M., Gregory, R. L., Tang, Q. & Lippert, F. Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations. J. Dent. 96, 103328. https://doi.org/10.1016/j.jdent.2020.103328 (2020).
-
Zeitz, C. et al. Synthesis of hydroxyapatite substrates: Bridging the gap between model surfaces and enamel. ACS Appl. Mater. Interfaces 8, 25848–25855. https://doi.org/10.1021/acsami.6b10089 (2016).
-
Faidt, T. et al. Effect of fluoride treatment on the acid resistance of hydroxyapatite. Langmuir 34, 15253–15258. https://doi.org/10.1021/acs.langmuir.8b03412 (2018).
-
Faidt, T. et al. Time dependence of fluoride uptake in hydroxyapatite. ACS Biomater. Sci. Eng. 3, 1822–1826. https://doi.org/10.1021/acsbiomaterials.6b00782 (2017).
-
Spengler, C. et al. Enhanced Adhesion of S. Mutans to Hydroxyapatite after Inoculation in Saliva. Journal of Molecular Recognition (2017). Preprint at https://arxiv.org/abs/1609.01137
-
Mischo, J. et al. Hydroxyapatite pellets as versatile model surfaces for systematic adhesion studies on enamel: A force spectroscopy case study. ACS Biomater. Sci. Eng. 8, 1476–1485. https://doi.org/10.1021/acsbiomaterials.1c00925 (2022).
-
Clark, W. B., Bammann, L. L. & Gibbons, R. J. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect. Immun. 19, 846–853. https://doi.org/10.1128/iai.19.3.846-853.1978 (1978).
-
Schröder-Turk, G. E. et al. Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23, 2535–2553. https://doi.org/10.1002/adma.201100562 (2011).
-
Spengler, C. et al. Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry. Nanoscale 11, 19713–19722. https://doi.org/10.1039/c9nr04375f (2019).
-
McKinney, W. In Proceedings of the 9th Python in Science Conference. (ed S. Millman van der Walt, J.) 56–61.
-
Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2 (2020).
-
Pyvenn (2018). https://github.com/tctianchi/pyvenn.git
-
Martinez-Hernandez, M., Reda, B. & Hannig, M. Chlorhexidine rinsing inhibits biofilm formation and causes biofilm disruption on dental enamel in situ. Clin. Oral Invest. https://doi.org/10.1007/s00784-020-03250-3 (2020).
-
Shirley, D. A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714. https://doi.org/10.1103/PhysRevB.5.4709 (1972).
-
Yeh, J. J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103. At. Data Nucl. Data Tables 32, 1–155. https://doi.org/10.1016/0092-640X(85)90016-6 (1985).
-
Hannig, M., Khanafer, A., Hoth-Hannig, W., Al-Marrawi, F. & Acil, Y. Transmission electron microscopy comparison of methods for collecting in situ formed enamel pellicle. Clin. Oral Invest. 9, 30–37. https://doi.org/10.1007/s00784-004-0284-1 (2005).
-
Zhang, Y. F., Li, D. Y., Yu, J. X. & He, H. T. On the thickness and nanomechanical properties of salivary pellicle formed on tooth enamel. J. Dent. 55, 99–104. https://doi.org/10.1016/j.jdent.2016.10.009 (2016).
-
Delius, J. et al. Label-free quantitative proteome analysis of the surface-bound salivary pellicle. Colloids Surf. B 152, 68–76. https://doi.org/10.1016/j.colsurfb.2017.01.005 (2017).
-
Trautmann, S. et al. Is the proteomic composition of the salivary pellicle dependent on the substrate material?. Proteomics Clin. Appl. 16, e2100109. https://doi.org/10.1002/prca.202100109 (2022).
-
Trautmann, S. et al. Proteomic analysis of the initial oral pellicle in caries-active and caries-free individuals. Proteomics Clin. Appl. 13, e1800143. https://doi.org/10.1002/prca.201800143 (2019).
-
Tomás, I. et al. In situ substrate-formed biofilms using IDODS mimic supragingival tooth-formed biofilms. J. Oral. Microbiol. 10, 1495975. https://doi.org/10.1080/20002297.2018.1495975 (2018).
-
Sedghi, L., DiMassa, V., Harrington, A., Lynch, S. V. & Kapila, Y. L. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol. 2000(87), 107–131. https://doi.org/10.1111/prd.12393 (2021).
-
Hamilton, I. R. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Caries Res. 11(Suppl 1), 262–291. https://doi.org/10.1159/000260304 (1977).
-
Baud, C. A. & Bang, S. Electron probe and x-ray diffraction microanalyses of human enamel treated in vitro by fluoride solution. Caries Res. 4, 1–13. https://doi.org/10.1159/000259621 (1970).
-
Uchtmann, H. & Duschner, H. Electron spectroscopic studies of interactions between superficially-applied fluorides and surface enamel. J. Dent. Res. 61, 423–428. https://doi.org/10.1177/00220345820610021201 (1982).
