Synthetic hydroxyapatite: a perfect substitute for dental enamel in biofilm formation studies

synthetic-hydroxyapatite:-a-perfect-substitute-for-dental-enamel-in-biofilm-formation-studies
Synthetic hydroxyapatite: a perfect substitute for dental enamel in biofilm formation studies

References

  1. Qamar, Z., Haji Abdul Rahim, Z. B., Chew, H. P. & Fatima, T. Influence of trace elements on dental enamel properties: A review. J. Pak. Med. Assoc. 67, 116–120 (2017).

    Google Scholar 

  2. Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993. https://doi.org/10.1152/physrev.00030.2016 (2017).

    Google Scholar 

  3. Roveri, N. & Iafisco, M. Evolving application of biomimetic nanostructured hydroxyapatite. Nanotechnol. Sci. Appl. 3, 107–125. https://doi.org/10.2147/nsa.S9038 (2010).

    Google Scholar 

  4. Frazier, P. D., Little, M. F. & Casciani, F. S. X-ray diffraction analysis of human enamel containing different amounts of fluoride. Arch. Oral Biol. 12, 35–42. https://doi.org/10.1016/0003-9969(67)90139-2 (1967).

    Google Scholar 

  5. Navia, J. M. Prevention of dental caries: agents which increase tooth resistance to dental caries. Int Dent J 22, 427–440 (1972).

    Google Scholar 

  6. Curzon, M. E. & Crocker, D. C. Relationships of trace elements in human tooth enamel to dental caries. Arch. Oral Biol. 23, 647–653. https://doi.org/10.1016/0003-9969(78)90189-9 (1978).

    Google Scholar 

  7. Chawhuaveang, D. D. et al. Acquired salivary pellicle and oral diseases: A literature review. J. Dent. Sci. 16, 523–529. https://doi.org/10.1016/j.jds.2020.10.007 (2021).

    Google Scholar 

  8. Hannig, M. & Joiner, A. The structure, function and properties of the acquired pellicle. Monogr. Oral Sci. 19, 29–64. https://doi.org/10.1159/000090585 (2006).

    Google Scholar 

  9. Trautmann, S. et al. Deep Proteomic insights into the individual short-term pellicle formation on enamel-an in situ pilot study. Proteomics Clin. Appl. 14, e1900090. https://doi.org/10.1002/prca.201900090 (2020).

    Google Scholar 

  10. Güth-Thiel, S. et al. Comprehensive measurements of salivary pellicle thickness formed at different intraoral sites on Si wafers and bovine enamel. Colloids Surf. B 174, 246–251. https://doi.org/10.1016/j.colsurfb.2018 (2019).

    Google Scholar 

  11. Hannig, C. & Hannig, M. The oral cavity-a key system to understand substratum-dependent bioadhesion on solid surfaces in man. Clin. Oral Invest. 13, 123–139. https://doi.org/10.1007/s00784-008-0243-3 (2009).

    Google Scholar 

  12. Siqueira, W., Custodio, W. & McDonald, E. New insights into the composition and functions of the acquired enamel pellicle. J. Dent. Res. 91, 1110–1118. https://doi.org/10.1177/0022034512462578 (2012).

    Google Scholar 

  13. Willems, H. M., Xu, Z. & Peters, B. M. Polymicrobial biofilm studies: From basic science to biofilm control. Curr. Oral Health Rep. 3, 36–44. https://doi.org/10.1007/s40496-016-0078-y (2016).

    Google Scholar 

  14. Kilian, M. et al. The oral microbiome—An update for oral healthcare professionals. Braz. Dent. J. 221, 657–666. https://doi.org/10.1038/sj.bdj.2016.865 (2016).

    Google Scholar 

  15. Verma, D., Garg, P. K. & Dubey, A. K. Insights into the human oral microbiome. Arch. Microbiol. 200, 525–540. https://doi.org/10.1007/s00203-018-1505-3 (2018).

    Google Scholar 

  16. Larsen, T. & Fiehn, N. E. Dental biofilm infections—An update. Acta Pathol. Microbiol. Scand. 125, 376–384. https://doi.org/10.1111/apm.12688 (2017).

    Google Scholar 

  17. Pitts, N. et al. Dental caries. Nat. Rev. Dis. Primers. 3, 17030. https://doi.org/10.1038/nrdp.2017.30 (2017).

    Google Scholar 

  18. McKay, F. S. Mass control of dental caries through the use of domestic water supplies containing fluorine. Am J Public Health Nations Health 38, 828–832. https://doi.org/10.2105/ajph.38.6.828 (1948).

    Google Scholar 

  19. Hertel, S. et al. Effect of Inula viscosa on the pellicle’s protective properties and initial bioadhesion in-situ. Arch. Oral Biol. 71, 87–96. https://doi.org/10.1016/j.archoralbio.2016.07.006 (2016).

    Google Scholar 

  20. Hertel, S. et al. Effect of tannic acid on the protective properties of the in situ formed pellicle. Caries Res. 51, 34–45. https://doi.org/10.1159/000451036 (2017).

    Google Scholar 

  21. Kouidhi, B., Al Qurashi, Y. M. & Chaieb, K. Drug resistance of bacterial dental biofilm and the potential use of natural compounds as alternative for prevention and treatment. Microb. Pathog. 80, 39–49. https://doi.org/10.1016/j.micpath.2015.02.007 (2015).

    Google Scholar 

  22. Schestakow, A. & Hannig, M. Effects of experimental agents containing tannic acid or chitosan on the bacterial biofilm formation in situ. Biomolecules https://doi.org/10.3390/biom10091315 (2020).

    Google Scholar 

  23. Nakamichi, I., Iwaku, M. & Fusayama, T. Bovine teeth as possible substitutes in the adhesion test. J. Dent. Res. 62, 1076–1081. https://doi.org/10.1177/00220345830620101501 (1983).

    Google Scholar 

  24. Reis, A. F., Giannini, M., Kavaguchi, A., Soares, C. J. & Line, S. R. Comparison of microtensile bond strength to enamel and dentin of human, bovine, and porcine teeth. J. Adhes. Dent. 6, 117–121 (2004).

    Google Scholar 

  25. Laurance-Young, P. et al. A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. J. Dent. 39, 266–272. https://doi.org/10.1016/j.jdent.2011.01.008 (2011).

    Google Scholar 

  26. Ayoub, H. M., Gregory, R. L., Tang, Q. & Lippert, F. Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations. J. Dent. 96, 103328. https://doi.org/10.1016/j.jdent.2020.103328 (2020).

    Google Scholar 

  27. Zeitz, C. et al. Synthesis of hydroxyapatite substrates: Bridging the gap between model surfaces and enamel. ACS Appl. Mater. Interfaces 8, 25848–25855. https://doi.org/10.1021/acsami.6b10089 (2016).

    Google Scholar 

  28. Faidt, T. et al. Effect of fluoride treatment on the acid resistance of hydroxyapatite. Langmuir 34, 15253–15258. https://doi.org/10.1021/acs.langmuir.8b03412 (2018).

    Google Scholar 

  29. Faidt, T. et al. Time dependence of fluoride uptake in hydroxyapatite. ACS Biomater. Sci. Eng. 3, 1822–1826. https://doi.org/10.1021/acsbiomaterials.6b00782 (2017).

    Google Scholar 

  30. Spengler, C. et al. Enhanced Adhesion of S. Mutans to Hydroxyapatite after Inoculation in Saliva. Journal of Molecular Recognition (2017). Preprint at https://arxiv.org/abs/1609.01137

  31. Mischo, J. et al. Hydroxyapatite pellets as versatile model surfaces for systematic adhesion studies on enamel: A force spectroscopy case study. ACS Biomater. Sci. Eng. 8, 1476–1485. https://doi.org/10.1021/acsbiomaterials.1c00925 (2022).

    Google Scholar 

  32. Clark, W. B., Bammann, L. L. & Gibbons, R. J. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect. Immun. 19, 846–853. https://doi.org/10.1128/iai.19.3.846-853.1978 (1978).

    Google Scholar 

  33. Schröder-Turk, G. E. et al. Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mater. 23, 2535–2553. https://doi.org/10.1002/adma.201100562 (2011).

    Google Scholar 

  34. Spengler, C. et al. Strength of bacterial adhesion on nanostructured surfaces quantified by substrate morphometry. Nanoscale 11, 19713–19722. https://doi.org/10.1039/c9nr04375f (2019).

    Google Scholar 

  35. McKinney, W. In Proceedings of the 9th Python in Science Conference. (ed S. Millman van der Walt, J.) 56–61.

  36. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2 (2020).

    Google Scholar 

  37. Pyvenn (2018). https://github.com/tctianchi/pyvenn.git

  38. Martinez-Hernandez, M., Reda, B. & Hannig, M. Chlorhexidine rinsing inhibits biofilm formation and causes biofilm disruption on dental enamel in situ. Clin. Oral Invest. https://doi.org/10.1007/s00784-020-03250-3 (2020).

    Google Scholar 

  39. Shirley, D. A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714. https://doi.org/10.1103/PhysRevB.5.4709 (1972).

    Google Scholar 

  40. Yeh, J. J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 Z 103. At. Data Nucl. Data Tables 32, 1–155. https://doi.org/10.1016/0092-640X(85)90016-6 (1985).

    Google Scholar 

  41. Hannig, M., Khanafer, A., Hoth-Hannig, W., Al-Marrawi, F. & Acil, Y. Transmission electron microscopy comparison of methods for collecting in situ formed enamel pellicle. Clin. Oral Invest. 9, 30–37. https://doi.org/10.1007/s00784-004-0284-1 (2005).

    Google Scholar 

  42. Zhang, Y. F., Li, D. Y., Yu, J. X. & He, H. T. On the thickness and nanomechanical properties of salivary pellicle formed on tooth enamel. J. Dent. 55, 99–104. https://doi.org/10.1016/j.jdent.2016.10.009 (2016).

    Google Scholar 

  43. Delius, J. et al. Label-free quantitative proteome analysis of the surface-bound salivary pellicle. Colloids Surf. B 152, 68–76. https://doi.org/10.1016/j.colsurfb.2017.01.005 (2017).

    Google Scholar 

  44. Trautmann, S. et al. Is the proteomic composition of the salivary pellicle dependent on the substrate material?. Proteomics Clin. Appl. 16, e2100109. https://doi.org/10.1002/prca.202100109 (2022).

    Google Scholar 

  45. Trautmann, S. et al. Proteomic analysis of the initial oral pellicle in caries-active and caries-free individuals. Proteomics Clin. Appl. 13, e1800143. https://doi.org/10.1002/prca.201800143 (2019).

    Google Scholar 

  46. Tomás, I. et al. In situ substrate-formed biofilms using IDODS mimic supragingival tooth-formed biofilms. J. Oral. Microbiol. 10, 1495975. https://doi.org/10.1080/20002297.2018.1495975 (2018).

    Google Scholar 

  47. Sedghi, L., DiMassa, V., Harrington, A., Lynch, S. V. & Kapila, Y. L. The oral microbiome: Role of key organisms and complex networks in oral health and disease. Periodontol. 2000(87), 107–131. https://doi.org/10.1111/prd.12393 (2021).

    Google Scholar 

  48. Hamilton, I. R. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Caries Res. 11(Suppl 1), 262–291. https://doi.org/10.1159/000260304 (1977).

    Google Scholar 

  49. Baud, C. A. & Bang, S. Electron probe and x-ray diffraction microanalyses of human enamel treated in vitro by fluoride solution. Caries Res. 4, 1–13. https://doi.org/10.1159/000259621 (1970).

    Google Scholar 

  50. Uchtmann, H. & Duschner, H. Electron spectroscopic studies of interactions between superficially-applied fluorides and surface enamel. J. Dent. Res. 61, 423–428. https://doi.org/10.1177/00220345820610021201 (1982).

    Google Scholar 

Download references