Terminal end groups of poly(ethylene glycol) reduce antigenicity

terminal-end-groups-of-poly(ethylene-glycol)-reduce-antigenicity
Terminal end groups of poly(ethylene glycol) reduce antigenicity
  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–94. https://doi.org/10.1038/s41578-021-00358-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassett KJ, Benenato KE, Jacquinet E, Lee A, Woods A, Yuzhakov A, et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther Nucleic Acids. 2019;15:1–11. https://doi.org/10.1016/j.omtn.2019.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JS, DeLuca PP, Lee KC. Emerging PEGylated drugs. Expert Opin Emerg Drugs. 2009;14:363–80. https://doi.org/10.1517/14728210902907847.

    Article  CAS  PubMed  Google Scholar 

  • Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev. 2009;61:1177–88. https://doi.org/10.1016/j.addr.2009.02.010.

    Article  CAS  PubMed  Google Scholar 

  • Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49:6288–308. https://doi.org/10.1002/anie.200902672.

    Article  CAS  Google Scholar 

  • Shiaishi K. Considering the immunogenicity of PEG: strategies for overcoming issues with PEGylated nanomedicines. Nanomedicine. 2025. https://doi.org/10.1080/17435889.2025.2538423

  • Zhang P, Sun F, Liu S, Jiang S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release. 2016;244:184–93. https://doi.org/10.1016/j.jconrel.2016.06.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoef JJF, Carpenter JF, Anchordoquy TJ, Schellekens H. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov Today. 2014;19:1945–52. https://doi.org/10.1016/j.drudis.2014.08.015.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Nanomed Nanobiotechnol. 2015;7:655–77. https://doi.org/10.1002/wnan.1339.

    Article  CAS  Google Scholar 

  • Lubich C, Allacher P, de la Rosa M, Bauer A, Prenninger T, Horling FM, et al. The mystery of antibodies against polyethylene glycol (PEG): what do we know?. Pharm Res. 2016;33:2239–49. https://doi.org/10.1007/s11095-016-1961-x.

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H, Hennink WE, Brinks V. The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res. 2013;30:1729–34. https://doi.org/10.1007/s11095-013-1067-7.

    Article  CAS  PubMed  Google Scholar 

  • Ju Y, Lee WS, Pilkington E, Kelly HG, Li S, Selva KJ, et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano. 2022;16:11769–80. https://doi.org/10.1021/acsnano.2c04543.

    Article  CAS  PubMed  Google Scholar 

  • Richter AW, Åkerblom E. Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int Archs Allergy Appl Immun. 1984;74:36–39. https://doi.org/10.1159/000233512.

    Article  CAS  Google Scholar 

  • Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012;9:1319–23. https://doi.org/10.1517/17425247.2012.720969.

    Article  CAS  PubMed  Google Scholar 

  • Chen BM, Su YC, Chang CJ, Burnouf PA, Chuang KH, Chen CH, et al. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal Chem. 2016;888:10661–6. https://doi.org/10.1021/acs.analchem.6b03109.

    Article  CAS  Google Scholar 

  • Dams ETM, Laverman P, Oyen WJG, Storm G, Scherphof GL, van der Meer JWM, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharm Exp Ther. 2000;292:1071–9. https://doi.org/10.1016/S0022-3565(24)35391-1.

    Article  CAS  Google Scholar 

  • Laverman P, Carstens MG, Boerman OC, Dams ETM, Oyen WJG, van Roojien N, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharm Exp Ther. 2001;298:607–12. https://doi.org/10.1016/S0022-3565(24)29419-240.

    Article  CAS  Google Scholar 

  • Ishida T, Ichiahara M, Wang XY, Yamamoto K, Kimura J, Majima E, Kiwada H. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112:15–25. https://doi.org/10.1016/j.jconrel.2006.01.005.

    Article  CAS  PubMed  Google Scholar 

  • Kozma GT, Mészáros T, Vashegyi I, Fülöp T, Örfi E, Dézsi L, et al. Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano. 2019;13:9315–24. https://doi.org/10.1021/acsnano.9b03942.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z-H, Cortese MM, Fang J-L, Wood R, Hummell DS, Risma KA, et al. Evaluation of association of anti-PEG antibodies with anaphylaxis after mRNA COVID-19 vaccination. Vaccine. 2023;41:4183–9. https://doi.org/10.1016/j.vaccine.2023.05.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozma GT, Shimizu T, Ishida T, Szebeni J Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Deliv Rev. 154–5:163–75. https://doi.org/10.1016/j.addr.2020.07.024.

  • McSweeney MD, Mohan M, Commins S, Lai SK Anaphylaxis to Pfizer/ BioNTech mRNA COVID-19 vaccine in a patient with clinically confirmed PEG allergy. Front Allergy. 2021;2. https://doi.org/10.3389/falgy.2021.715844.

  • Liu YL, Liao TY, Ho KW, Liu ES, Huang BC, Hong ST, et al. Impact of pre-existing anti-polyethylene glycol antibodies on the pharmacokinetics and efficacy of a COVID-19 mRNA vaccine (Comirnaty) in vivo. Biomater Res. 2024;28:0112. https://doi.org/10.34133/bmr.0112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thi TTH, Pilkington EH, Nguyen DH, Lee JS, Park KD, Truong NP. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers. 2020;12:298. https://doi.org/10.3390/polym12020298.

    Article  CAS  Google Scholar 

  • Zalipsky S, Hansen BH, Oaks JM, Allen TM. Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes. J Pharm Sci. 1986;85:133–7. https://doi.org/10.1021/js9504043.

    Article  Google Scholar 

  • Barz M, Luxenhofer R, Zentel R, Vicent MJ. Overcoming the PEG- addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polym Chem. 2011;2:1900–18. https://doi.org/10.1039/c0py00406e.

    Article  CAS  Google Scholar 

  • Kierstead PH, Okochi H, Venditto VJ, Chuong TC, Kivimae S, Fréchet JMJ, et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J Control Release. 2015;213:1–9. https://doi.org/10.1016/j.jconrel.2015.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estephan ZG, Schlenoff PS, Schlenoff JB. Zwitteration as an alternative to PEGylation. Langmuir. 2011;27:6794–6800. https://doi.org/10.1021/la200227b.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, et al. Zwitterionic biomaterials. Chem Rev. 2022;122:17073–154. https://doi.org/10.1021/acs.chemrev.2c00344.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Sun F, Tsao C, Jiang S. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc Natl Acad Sci USA. 2015;114:12046–51. https://doi.org/10.1073/pnas.1512465112.

    Article  CAS  Google Scholar 

  • Li B, Yuan Z, Hung HC, Ma J, Jain P, Tsao C, et al. Revealing the immunogenic risk of polymers. Angew Chem Int Ed. 2018;57:13873–6. https://doi.org/10.1002/anie.201808615.

    Article  CAS  Google Scholar 

  • Zaman R, Isalm RA, Ibnat N, Othman I, Zaini A, Lee CY, Chowdhury EH. Current strategies in extending half-lives of therapeutic proteins. J Control Release. 2019;301:176–89. https://doi.org/10.1016/j.jconrel.2019.02.016.

    Article  CAS  PubMed  Google Scholar 

  • Rondon A, Mahri S, Morales-Yanez F, Dumoulin M, Vanbever R. Protein engineering strategies for improved pharmacokinetics. Adv Funct Mater. 2021;31:2101633. https://doi.org/10.1002/adfm.202101633.

    Article  CAS  Google Scholar 

  • Ryujin T, Shimizu T, Miyahara R, Asai D, Shimazui R, Yoshikawa T, et al. Blood retention and antigenicity of polycarboxybetaine-modified liposomes. Int J Pharm. 2020;586:119521. https://doi.org/10.1016/j.ijpharm.2020.119521.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi K, Hamano M, Ma H, Kawano K, Maitani Y, Aoshi T, et al. Hydrophobic blocks of PEG-conjugates play a significant role in the accelerated blood clearance (ABC) phenomenon. J Control Release. 2013;165:183–90. https://doi.org/10.1016/j.jconrel.2012.11.016.

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Shiraishi K, Minowa T, Kawano K, Yokoyama M, Hattori Y, et al. Accelerated blood clearance was not induced for a gadolinium-containing PEG-poly(L-lysine)-based polymeric micelle in mice. Pharm Res. 2010;27:296–302. https://doi.org/10.1007/s11095-009-0018-9.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi K, Yokoyama M. Antigenicity extension: a novel concept explained by the immunogenicity of PEG. ACS Bio Med Chem Au. 2025;5:42–54. https://doi.org/10.1021/acsbiomedchemau.4c00042.

    Article  CAS  PubMed  Google Scholar 

  • Sherman MR, Williams LD, Sobczyk MA, Michaels SJ, Saifer MG. Role of the methoxy group in immune responses to mPEG-protein conjugates. Bioconjugate Chem. 2012;23:485–99. https://doi.org/10.1021/bc200551b.

    Article  CAS  Google Scholar 

  • Saifer MGP, Williams LD, Sobczyk MA, Michaels SJ, Sherman MR. Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins. Mol Immunol. 2014;57:236–46. https://doi.org/10.1016/j.molimm.2013.07.014.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Lila ASA, Fujita R, Awata M, Kawanishi M, Hashimoto Y, et al. A hydroxyl PEG version of PEGylated liposomes and its impact on anti-PEG IgM induction and on the accelerated clearance of PEGylated liposomes. Eur J Pharm Biopharm. 2018;127:142. https://doi.org/10.1016/j.ejpb.2018.02.019.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Awata M, Lila ASA, Yoshioka C, Kawaguchi Y, Ando H, et al. Complement activation induced by PEG enhances humoral immune responses against antigens encapsulated in PEG-modified liposomes. J Control Release. 2021;329:1046–53. https://doi.org/10.1016/j.jconrel.2020.10.033.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Yokoyama M, Opanasopit P, Hayama A, Kawano K, Maitani Y. What are determining factors for stable drug incorporation into polymeric micelle carriers? Consideration on physical and chemical characters of the micelle inner core. J Controlled Release. 2007;123:11–18. https://doi.org/10.1016/j.jconrel.2007.07.008.

    Article  CAS  Google Scholar 

  • Shiraishi K, Kawano K, Maitani Y, Aoshi T, Ishii KJ, Sanada Y, et al. Exploring the relationship between anti-PEG IgM behaviors and PEGylated nanoparticles and its significance for accelerated blood clearance. J Control Release. 2016;234:59–67. https://doi.org/10.1016/j.jconrel.2016.05.010.

    Article  CAS  PubMed  Google Scholar 

  • Dreier P, Matthes R, Fuß F, Schmidt J, Schulz D, Linden GM, et al. Isomerization of poly(ethylene glycol): a strategy for the evasion of anti-PEG antibody recognition. J Am Chem Soc. 2025;147:21538–21548. https://doi.org/10.1021/jacs.5c02716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Cerrillo DM, Shiraishi K, Mallen-Huertas L, Peters R, Wilson DA, Neumann K. Introducing sulfur ylides as aharge-neutral termini for mitigating poly(ethylene glycol) antigenicity in nanomedicine. JACS Au. 2025;5:4378–88. https://doi.org/10.1021/jacsau.5c00748.

    Article  CAS  PubMed  PubMed Central  Google Scholar