References
-
Beccari, G. et al. Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf,) in central Italy and their in vitro biosynthesis of secondary metabolites. Food Microbiol. 70, 17–27. https://doi.org/10.1016/j.fm.2017.08.016 (2018).
-
Grosse-Heilmann, M., Cristiano, E., Deidda, R. & Viola, F. Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resour. Environ. Sustain. 100170 https://doi.org/10.1016/j.resenv.2024.100170 (2024).
-
Gorczyca, A. et al. Fusarium head blight incidence and mycotoxin accumulation in three durum wheat cultivars in relation to sowing date and density. Sci. Nat. 105, 2. https://doi.org/10.1007/s00114-017-1528-7 (2018).
-
Viviani, A. et al. Priority actions for Fusarium head blight resistance in durum wheat: Insights from the wheat initiative. Plant. Genome. 18, e20539. https://doi.org/10.1002/tpg2.20539 (2025).
-
Chiotta, M. L. et al. Fusarium graminearum species complex occurrence on soybean and F. graminearum sensu stricto inoculum maintenance on residues in soybean-wheat rotation under field conditions. J. Appl. Microbiol. 130, 208–216. https://doi.org/10.1111/jam.14765 (2021).
-
Senatore, M. T. et al. Different diagnostic approaches for the characterization of the fungal community and Fusarium species complex composition of Italian durum wheat grain and correlation with secondary metabolite accumulation. J. Sci. Food. Agric. 103, 4503–4521. https://doi.org/10.1002/jsfa.12526 (2023).
-
Ji, F. et al. Occurrence, toxicity, production and detection of Fusarium mycotoxin: a review. Food Prod. Process. Nutr. 1 (6). https://doi.org/10.1186/s43014-019-0007-2 (2019).
-
McCormick, S. P., Alexander, N. J. & Proctor, R. H. Trichothecene triangle: Toxins, genes, and plant disease. In (Ed. Gang, D.) Phytochemicals, plant growth, and the environment. Recent advances in phytochemistry (Vol. 42, pp. 1–17). Springer. (2013). https://doi.org/10.1007/978-1-4614-4066-6_1
-
Hill, R., Buggs, R. J., Vu, D. T. & Gaya, E. Lifestyle transitions in fusarioid fungi are frequent and lack clear genomic signatures. Mol. Biol. Evol. 39, msac085. https://doi.org/10.1093/molbev/msac085 (2022).
-
Alisaac, E. & Mahlein, A. K. Fusarium head blight on wheat: Biology, modern detection and diagnosis and integrated disease management. Toxins 15, 192. https://doi.org/10.3390/toxins15030192 (2023).
-
Haile, J. K. et al. Fusarium head blight in durum wheat: Recent status, breeding directions, and future research prospects. Phytopathology 109, 1664–1675. https://doi.org/10.1094/PHYTO-03-19-0095-RVW (2019).
-
Scarpino, V. & Blandino, M. Effects of durum wheat cultivars with different degrees of FHB susceptibility grown under different meteorological conditions on the contamination of regulated, modified and emerging mycotoxins. Microorganisms 9, 408. https://doi.org/10.3390/microorganisms9020408 (2021).
-
Sweany, R. R. et al. Why do plant-pathogenic fungi produce mycotoxins? Potential roles toxins in the plant ecosystem. Phytopathology 112, 2044–2051. https://doi.org/10.1094/PHYTO-02-22-0053-SYM (2022).
-
Covarelli, L. et al. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. J. Sci. Food. Agric. 95, 540–551. https://doi.org/10.1002/jsfa.6772 (2015).
-
Crippin, T., Renaud, J. B., Sumarah, M. W. & Miller, J. D. Comparing genotype and chemotype of Fusarium graminearum from cereals in Ontario, Canada. PLoS ONE 14, e0216735. (2019). https://doi.org/10.1371/journal.pone.0216735
-
Foroud, N. A. et al. Trichothecenes in cereal grains – An update. Toxins 11, 634. https://doi.org/10.3390/toxins11110634 (2019).
-
Kelly, A. C. & Ward, T. J. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen. PLoS ONE. 13, e0194616. https://doi.org/10.1371/journal.pone.0194616 (2018).
-
Commission Regulation (EU). 2024/1022 of 8 April 2024 amending Regulation (EU) 2023/915 as regards maximum levels of deoxynivalenol in food. https://eur-lex.europa.eu/eli/reg/2024/1022/oj/eng
-
Commission Recommendation (EU). 2013/165 of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. https://www.stradalex.eu/en/se_src_publ_leg_eur_jo/document/ojeu_2013.091.01.0012.01
-
Wachowska, U. & Rychcik, B. Plants control the structure of mycorrhizal and pathogenic fungal communities in soil in a 50-year maize monoculture experiment. Plant. Soil. 484, 133–153. https://doi.org/10.1007/s11104-022-05779-6 (2023).
-
Zaied, C., Zouaoui, N., Bacha, H. & Abid, S. Natural occurrence of zearalenone in Tunisian wheat grains. Food Control. 25, 773–777. https://doi.org/10.1016/j.foodcont.2011.12.012 (2012).
-
Falkauskas, R. et al. Zearalenone and Its Metabolites in Blood Serum, Urine, and Milk of Dairy Cows. Animals 12, 1651. (2022). https://doi.org/10.3390/ani12131651
-
Gruber-Dorninger, C., Novak, B., Nagl, V. & Berthiller, F. Emerging mycotoxins: beyond traditionally determined food contaminants. J. Agric. Food Chem. 65, 7052–7070. https://doi.org/10.1021/acs.jafc.6b03413 (2017).
-
Cipollone, M. J., Moya, P., Martínez, I., Saparrat, M. & Sisterna, M. Grain discoloration in different genotypes of durum wheat (Triticum durum L.) in Argentina: associated mycobiota and peroxidase activity. J. Plant. Prot. Res. 60, 14–20. https://doi.org/10.24425/jppr.2020.132200 (2020).
-
Masiello, M. et al. Molecular identification and mycotoxin production by Alternaria species occurring on durum wheat, showing black point symptoms. Toxins 12, 275. https://doi.org/10.3390/toxins12040275 (2020).
-
Daichi, M. B. et al. Assessing Alternaria species and related mycotoxin contamination in wheat in Algeria: A food safety risk. Toxins (Basel). 17309. https://doi.org/10.3390/toxins17060309 (2025).
-
Jarolim, K. et al. Activation of the Nrf2-ARE pathway by the Alternaria alternata mycotoxins altertoxin I and II. Arch. Toxicol. 91, 203–216. https://doi.org/10.1007/s00204-016-1726-7 (2017).
-
Brugger, E. M. et al. Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicol. Lett. 164, 221–230. https://doi.org/10.1016/j.toxlet.2006.01.001 (2006).
-
Ostry, V. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 1, 175–188. https://doi.org/10.3920/WMJ2008.x013 (2008).
-
Schmutz, C., Cenk, E. & Marko, D. The Alternaria mycotoxin alternariol triggers the immune response of il-1β‐stimulated, differentiated caco‐2 cells. Mol. Nutr. Food Res. 63, 1900341. https://doi.org/10.1002/mnfr.201900341 (2019).
-
Fleck, S. C., Burkhardt, B., Pfeiffer, E. & Metzler, M. Alternaria toxins: Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol. Lett. 214, 27–32. https://doi.org/10.1016/j.toxlet.2012.08.003 (2012).
-
Abbas, H. K. & Riley, R. T. The presence and phytotoxicity of fumonisins and AAL-toxin in Alternaria alternata. Toxicon 34, 133–136. https://doi.org/10.1016/0041-0101(95)00124-7 (1996).
-
Haidukowski, M. et al. Deoxynivalenol and T-2 toxin as major concerns in durum wheat from Italy. Toxins 14, 627. https://doi.org/10.3390/toxins14090627 (2022).
-
Solanki, M. K. et al. Analysis of stored wheat grain-associated microbiota reveals biocontrol activity among microorganisms against mycotoxigenic fungi. J. Fungi. 7, 781. https://doi.org/10.3390/jof7090781 (2021).
-
Wachowska, U., Głowacka, K., Mikołajczyk, W. & Kucharska, K. Biofilm of Aureobasidium pullulans var. pullulans on winter wheat kernels and its effect on other microorganisms. Microbiology 85, 523–530. https://doi.org/10.1134/S0026261716050192 (2016).
-
Abdel-Kareem, M. M., Zohri, A. N. A. & Nasr, S. A. E. E. Novel marine yeast strains as plant growth-promoting agents improve defense in wheat (Triticum aestivum) against Fusarium oxysporum. J. Plant Dis. Prot. 128, 973–988. https://doi.org/10.1007/s41348-021-00461-y (2021).
-
Wachowska, U., Stuper-Szablewska, K. & Perkowski, J. Yeasts isolated from wheat grain can suppress Fusarium head blight and decrease trichothecene concentrations in bread wheat and durum wheat grain. Pol. J. Environ. Stud. 29, 4345–4360. https://doi.org/10.15244/pjoes/118427 (2020).
-
Chi, Z., Wang, X. X., Ma, Z. C., Buzdar, M. A. & Chi, Z. M. The unique role of siderophore in marine-derived Aureobasidium pullulans HN6. 2. Biometals 25, 219–230. (2012). https://doi.org/10.1007/s10534-011-9499-1
-
Böswald, C., Engelhardt, G., Vogel, H. & Wallnöfer, P. R. Metabolism of the Fusarium mycotoxins zearalenone and deoxynivalenol by yeast strains of technological relevance. Nat. Toxins. 3, 138–144. https://doi.org/10.1002/nt.2620030304 (1995).
-
Illueca, F. et al. Antifungal activity of biocontrol agents in vitro and potential application to reduce mycotoxins (aflatoxin B1 and ochratoxin A). Toxins 13, 752. https://doi.org/10.3390/toxins13110752 (2021).
-
Papp, L. A., Horváth, E., Peles, F., Pócsi, I. & Miklós, I. Insight into yeast–mycotoxin relations. Agriculture 11, 1291. https://doi.org/10.3390/agriculture11121291 (2021).
-
Vanhoutte, I., Audenaert, K. & De Gelder, L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 7, 561. https://doi.org/10.3389/fmicb.2016.00561 (2016).
-
Giedrojć, W. & Wachowska, U. Mycobiome and pathogenic Fusarium fungi in the rhizosphere of durum wheat after seed dressing with Debaryomyces hansenii. Agriculture 15, 639. https://doi.org/10.3390/agriculture15060639 (2025).
-
Meier, U. Phenological Growth Stages. In Phenology: An Integrative Environmental Science. (Ed. Schwartz, M.D.) Tasks for Vegetation Science. Springer: Dordrecht, The Netherlands, p. 39. (2003).
-
Gams, W. in Cephalosporium-Artige Schimmelpilze (Hyphomycetes). (eds Fischer, G.) (Taylor & Francis, Ltd., 1971).
-
Leslie, J. F. & Summerell, B. A. The Fusarium Laboratory Manual (Blackwell Publishing Professional, 2006).
-
Statistica (Data Analysis. Software System) version 13 (TIBCO Software Inc, 2017).
-
Rojas, E. C. et al. Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol. Control. 144, 104222. https://doi.org/10.1016/j.biocontrol.2020.104222 (2020).
-
Bamforth, J. et al. A survey of Fusarium species and ADON genotype on Canadian wheat grain. Front. Fungal Biology. 3, 1062444. https://doi.org/10.3389/ffunb.2022.1062444 (2022).
-
Varga, E. et al. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ. Microbiol. 17, 2588–2600. https://doi.org/10.1111/1462-2920.12718 (2015).
-
Wachowska, U. et al. Secondary metabolites of pathogenic fungi in Triticum durum grain protected with Debaryomyces hansenii in two different locations in Poland. Agronomy 13, 721. https://doi.org/10.3390/agronomy13030721 (2023).
-
Bertuzzi, T. et al. Co-occurrence of moniliformin and regulated Fusarium toxins in maize and wheat grown in Italy. Molecules 25, 2440. https://doi.org/10.3390/molecules25102440 (2020).
-
Perellò, A., Moreno, M. & Sisterna, M. Alternaria infectoria species-group associated with black point of wheat in Argentina. Plant. Pathol. 57, 379. https://doi.org/10.1111/j.1365-3059.2007.01713.x (2008).
-
Somma, S., Amatulli., M. T., Masiello, M., Moretti, A. & Logrieco, A. F. Alternaria species associated to wheat black point identified through a multilocus sequence approach. Int. J. Food Microbiol. 293, 34–43. https://doi.org/10.1016/j.ijfoodmicro.2019.01.001 (2019).
-
Pero, R. W., Posner, H., Blois, M., Harvan, D. & Spalding, J. W. Toxicity of metabolites produced by the Alternaria. Environ. Health Perspect. 4, 87–94. https://doi.org/10.1289/ehp.730487 (1973).
-
Aamot, H. U. et al. Microdochium majus and other fungal pathogens associated with reduced gluten quality in wheat grain. Int. J. Food Microbiol. 331, 108712. https://doi.org/10.1016/j.ijfoodmicro.2020.108712 (2020).
-
Xu, X. M. et al. Relationship between the fungal complex causing Fusarium head blight of wheat and environmental conditions. Phytopathology 98, 69–78. https://doi.org/10.1094/PHYTO-98-1-0069 (2008).
-
Balendres, M. A. et al. Epicoccum. In: (eds Amaresan, N. & Kumar, K.) Compendium of Phytopathogenic Microbes in Agro-Ecology. Springer, Cham. https://doi.org/10.1007/978-3-031-81770-0_13 (2025).
-
Jensen, B. D., Knorr, K. & Nicolaisen, M. In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains. Eur. J. Plant Pathol. 146, 657–670. https://doi.org/10.1007/s10658-016-0950-6 (2016).
-
Nzabanita, C., Zhang, L., Wang, Y., Wang, S. & Guo, L. The wheat endophyte Epicoccum layuense J4-3 inhibits Fusarium graminearum and enhances plant growth. J. Fungi. 10, 10. https://doi.org/10.3390/jof10010010 (2023).
-
Alfonzo, A., Sicard, D., Di Miceli, G., Guezenec, S. & Settanni, L. Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiol. 94, 103666. https://doi.org/10.1016/j.fm.2020.103666 (2021).
-
Shude, S. P. N., Mbili, N. C. & Yobo, K. S. Epiphytic yeasts as potential antagonists against Fusarium head blight of wheat (Triticum aestivum L.) caused by Fusarium graminearum sensu stricto. J. Saudi Soc. Agricultural Sci. 21, 404–411. https://doi.org/10.1016/j.jssas.2021.11.001 (2022).
-
Wachowska, U. et al. The application of antagonistic yeasts and bacteria: An assessment of in vivo and under field conditions pattern of Fusarium mycotoxins in winter wheat grain. Food Control. 138, 109039. https://doi.org/10.1016/j.foodcont.2022.109039 (2022).
-
Palazzini, J. et al. Biocontrol of Fusarium graminearum sensu stricto, reduction of deoxynivalenol accumulation and phytohormone induction by two selected antagonists. Toxins 10, 88. https://doi.org/10.3390/toxins10020088 (2018).
-
Sherif, M., Kirsch, N., Splivallo, R., Pfohl, K. & Karlovsky, P. The role of mycotoxins in interactions between Fusarium graminearum and F. verticillioides growing in saprophytic cultures and co-infecting maize plants. Toxins 15, 575. https://doi.org/10.3390/toxins15090575 (2023).
-
Cooney, J. M., Lauren, D. R. & di Menna, M. E. Impact of competitive fungi on trichothecene production by Fusarium graminearum. J. Agric. Food Chem. 49, 522–526. https://doi.org/10.1021/jf0006372 (2001).
-
Boeira, L. S., Bryce, J. H., Stewart, G. G. & Flannigan, B. The effect of combinations of Fusarium mycotoxins (deoxynivalenol, zearalenone and fumonisin B1) on growth of brewing yeasts. J. Appl. Microbiol. 88, 388–403. https://doi.org/10.1046/j.1365-2672.2000.00972.x (2000).
-
Whitehead, M. P. & Flannigan, B. The Fusarium mycotoxin deoxynivalenol and yeast growth and fermentation. J. Inst. Brew. 95, 411–413. https://doi.org/10.1002/j.2050-0416.1989.tb04646.x (1989).
-
Wall-Martínez, H. A. et al. The fate of Fusarium mycotoxins (deoxynivalenol and zearalenone) through wort fermenting by Saccharomyces yeasts (S. cerevisiae and S. pastorianus). Food Res. Int. 126, 108587. https://doi.org/10.1016/j.foodres.2019.108587 (2019).
-
Tillmann, M., von Tiedemann, A. & Winter, M. Crop rotation effects on incidence and diversity of Fusarium species colonizing stem bases and grains of winter wheat. J. Plant Dis. Prot. 124, 121–130 (2017).
-
Vujanovic, V., Mavragani, D. & Hamel, Ch. Fungal communities associated with durum wheat production system: A characterization by growth stage plant organ and preceding crop, Crop Prot 37, 26-34. https://doi.org/10.1016/j.cropro.2012.02.006 (2012).
-
Seybold, H. et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 11, 1910. https://doi.org/10.1038/s41467-020-15633-x (2020).
-
Adamik, L. et al. Suboptimal pre-anthesis water status mitigates wheat susceptibility to fusarium head blight and triggers specific metabolic responses. Sci. Rep. 15, 11773. https://doi.org/10.1038/s41598-025-96159-4 (2025).
-
Marburger, D.A. et al. Crop rotation and management effect on Fusarium spp. populations. Crop Sci. 55, 365-376. https://doi.org/10.2135/cropsci2014.03.0199 (2015)
-
Karlsson, I., Persson, P. & Friberg, H. Fusarium head blight from a microbiome perspective. Front. Microbiol. 12, 628373. https://doi.org/10.3389/fmicb.2021.628373 (2021)
-
Grudzinska-Sterno, M., Yuen, J., Stenlid, J. & Djurle, A. Fungal communities in organically grown winter wheat affected by plant organ and development stage. Eur. J. Plant Pathol. 146, 1–17. https://doi.org/10.1007/s10658-016-0927-5 (2016).
