References
-
Dostál, R. Korelační vztahy u klíčních rostlin Papilionaceí. Rozpr. Čes. Akad. Tř. II 17, 1–44 (1908).
-
Goebel, K. Einleitung in die experimentelle Morphologie der Pflanzen. Verlag von G.B. Teubner, Leipzig und Berlin. ISBN: 9781161283037 (1908).
-
Ljung, K., Bhalerao, R. P. & Sandberg, G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 28, 465–474 (2001).
-
Snow, R. The correlative inhibition of the growth of axillary buds. Ann. Bot. 39, 841–859 (1925).
-
Thimann, K.V. & Skoog, F. Studies on the growth hormone of plants. III. The inhibiting action of the growth substance on bud development. Proc. Natl. Acad. Sci. USA 19, 714–716 (1933).
-
Thimann, K.V. & Skoog, F. On the inhibition of bud development and other functions of growth substance in Vicia faba. Proc. Natl. Acad. Sci. U S A 114, 317–339 (1934).
-
Dostál, R. On integration in plants. Harvard University Press Cambridge. ISBN 9780674634503 (1967).
-
Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).
-
Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).
-
Mason, M. G., Ross, J. J., Babst, B. A., Wienclaw, B. N. & Beveridge, C. A. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc. Natl. Acad. Sci. USA 111, 6092–6097 (2014).
-
Kebrom, T. H. & Mullet, J. E. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ. 38, 1471–1478 (2015).
-
Salam, B. B. et al. Etiolated stem branching is a result of systemic signaling associated with sucrose level. Plant Physiol. 175, 734–745 (2017).
-
Domagalska, M. A. & Leyser, O. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 12, 211–221 (2011).
-
Zhang, J. et al. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nat. Commun. 11, 3508 (2020).
-
Mishra, B. S., Sharma, M. & Laxmi, A. Role of sugar and auxin crosstalk in plant growth and development. Physiol. Plant. 174, e13546 (2022).
-
Dun, E. A., Brewer, P. B., Gillam, E. M. J. & Beveridge, C. A. Strigolactones and shoot branching: What is the real hormone and how does it work?. Plant Cell Physiol. 64, 967–983 (2023).
-
Snow, R. On the nature of correlative inhibition. New Phytol. 36, 283–300 (1937).
-
Ongaro, V., Bainbridge, K., Williamson, L. & Leyser, O. Interactions between axillary branches of arabidopsis. Mol. Plant 1, 388–400 (2008).
-
Balla, J. et al. Auxin flow-mediated competition between axillary buds to restore apical dominance. Sci. Rep. 6, 35955 (2016).
-
Patrick, J.W. & Wareing, P.F. Auxin-promoted transport of metabolites in stems of Phaseolus vulgaris L.: Effects remote from the site of hormone application. J. Exp. Bot. 29, 359–366 (1978).
-
Yu, S. M., Lo, S. F. & Ho, T. H. D. Source-sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci. 20, 844–857 (2015).
-
Kebrom, T. H. A growing stem inhibits bud outgrowth – The overlooked theory of apical dominance. Front Plant Sci. 8, 1847 (2017).
-
Cao, D. et al. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. Plant Physiol. 192, 1420–1434 (2023).
-
Zhao, Z. et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice. Proc. Natl. Acad. Sci. USA 119, e2121671119 (2022).
-
Balla, J., Blažková, J., Reinöhl, V. & Procházka, S. Involvement of auxin and cytokinins in initiation of growth of isolated pea buds. Plant Growth Reg. 38, 149–156 (2002).
-
Fichtner, F. et al. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). Plant J. 92, 611–623 (2017).
-
Barbier, F. et al. HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. New Phytol. 231, 1088–1104 (2021).
-
Sairanen, I. et al. Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24, 4907–4916 (2012).
-
Mishra, B. S., Singh, M., Aggrawal, P. & Laxmi, A. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE 4, e4502 (2009).
-
Bertheloot, J. et al. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. New Phytol. 225, 866–879 (2020).
-
Shinohara, N., Taylor, C. & Leyser, O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol. 11, e1001474 (2013).
-
Waldie, T. & Leyser, O. Cytokinin targets auxin transport to promote shoot branching. Plant Physiol. 177, 803–818 (2018).
-
Duan, J. et al. Strigolactone promotes cytokinin degradation through transcriptional activation of Cytokinin Oxidase/Dehydrogenase 9 in rice. Proc. Natl. Acad. Sci. USA 116, 14319–14324 (2019).
-
van Rongen, M., Bennett, T., Ticchiarelli, F. & Leyser, O. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. PLoS Genet. 15, e1008023 (2019).
-
Zhang, L., Fang, W., Chen, F. & Song, A. The role of transcription factors in the regulation of plant shoot branching. Plants 11, 1997 (2022).
-
Su, C. et al. Tree architecture: A strigolactone-deficient mutant reveals a connection between branching order and auxin gradient along the tree stem. Proc. Natl. Acad. Sci. USA 120, e230858712 (2023).
-
Beveridge, C. A., Rameau, C. & Wijerathna-Yapa, A. Lessons from a century of apical dominance research. J. Exp. Bot. 74, 3903–3922 (2023).
-
Fichtner, F. et al. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. New Phytol. 244, 900–913 (2024).
-
Nahas, Z., Ticchiarelli, F., van Rongen, M., Dillon, J. & Leyser, O. The activation of Arabidopsis axillary buds involves a switch from slow to rapid committed outgrowth regulated by auxin and strigolactone. New Phytol. 242, 1084–1097 (2024).
-
Sachs, T. On the Determination of the Pattern of Vascular Tissue in Peas. Ann. Bot. 32, 781–790 (1968).
-
Li, C-J. & Bangerth, F. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol. Plant. 106, 415–420 (1999).
-
Prusinkiewicz, P. et al. Control of bud activation by an auxin transport switch. Proc. Natl. Acad. Sci. USA 106, 17431–17436 (2009).
-
Crawford, S. et al. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137, 2905–2913 (2010).
-
Balla, J., Kalousek, P., Reinöhl, V., Friml, J. & Procházka, S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 65, 571–577 (2011).
-
DeMason, D. A. & Polowick, P. L. Patterns of DR5::GUS expression in organs of pea (Pisum sativum). Int. J. Plant Sci. 70, 1–11 (2009).
-
Weijers, D. et al. Maintenance of embryonic auxin distribution for apical-basal patterning by PIN-FORMED dependent auxin transport in Arabidopsis. Plant Cell 17, 2517–2526 (2005).
-
Vernoux, T., Besnard, F. & Traas, J. Auxin at the shoot apical meristem. Cold Spring Harb. Perspect. Biol. 2, a001487 (2010).
-
Robert, H. S. et al. Local auxin sources orient the apical-basal axis in arabidopsis embryos. Curr. Biol. 23, 2506–2512 (2013).
-
Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 15, 591–602 (2003).
-
Paciorek, T., Sauer, M., Balla, J., Wiśniewska, J. & Friml, J. Immunocytochemical technique for protein localization in sections of plant tissues. Nat. Protoc. 1, 104–107 (2006).
