Toward a more effective engineered biology

toward-a-more-effective-engineered-biology
Toward a more effective engineered biology
  • Comment
  • Published:

Nature Chemical Engineering (2025)Cite this article

Subjects

Engineered biology has long been touted as a sustainable avenue for producing the world’s energy, chemicals and food. However, substantial challenges in scalability, economic competitiveness and resource use have hindered its industrial translatability. This Comment discusses emerging strategies to increase the competitiveness of this technology by rethinking the microbial host, feedstock, product landscapes and applications.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

$119.00 per year

only $9.92 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow diagram summarizing the workflow of metabolic engineering, starting from selection of hosts and feedstocks to the distribution of commercialized products.

References

  1. Jawed, K., Yazdani, S. & Koffas, M. Metab. Eng. Commun. 9, e00095 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. Numberger, D. et al. Sci. Rep. 9, 9673 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Ruiz, C. et al. J. Biotechnol. 306, 9–15 (2019).

    CAS  PubMed  Google Scholar 

  4. Goveas, L. C. et al. J. Pure Appl. Microbiol. 14, 473–484 (2020).

    CAS  Google Scholar 

  5. Bazina, N. et al. J. Biotechnol. 374, 17–30 (2023).

    CAS  PubMed  Google Scholar 

  6. Liew, F. E. et al. Nat. Biotechnol. 40, 335–344 (2022).

    CAS  PubMed  Google Scholar 

  7. Patel, R. N. et al. Biomolecules 3, 741–777 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Pauli, S. et al. Metab. Eng. 77, 100–117 (2023).

    CAS  PubMed  Google Scholar 

  9. Reed, K. B. et al. Nat. Commun. 15, 3188 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shankar, S. & Hoyt, M. A. Expression Constructs and Methods of Genetically Engineering Methylotrophic Yeast (ed. USPTO) (Impossible Foods, 2020).

  11. Xu, Y. et al. Trends Food Sci. Technol. 129, 512–527 (2022).

    CAS  Google Scholar 

  12. Choi, Y. & Lee, S. Y. Nat. Rev. Chem. 4, 638–656 (2020).

    CAS  PubMed  Google Scholar 

  13. Wen, A. et al. ACS Synth. Biol. 10, 3264–3277 (2021).

    CAS  PubMed  Google Scholar 

  14. Ali, N. et al. Sci. Rep. 10, 1116 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Conde-Pueyo, N. et al. Life 10, 14 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation (NSF) under award numbers CBET- 2133661 and EFMA-2029249. S.G.L. was supported by an NSF Graduate Research Fellowship Program.

Author information

Authors and Affiliations

  1. McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA

    Sung Gyung Lee & Hal S. Alper

  2. Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX, USA

    Hal S. Alper

Authors

  1. Sung Gyung Lee
  2. Hal S. Alper

Corresponding author

Correspondence to Hal S. Alper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Joshua Yuan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.G., Alper, H.S. Toward a more effective engineered biology. Nat Chem Eng (2025). https://doi.org/10.1038/s44286-025-00263-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s44286-025-00263-1