References
-
Fiore, N. T., Debs, S. R., Hayes, J. P., Duffy, S. S. & Moalem-Taylor, G. Pain-resolving immune mechanisms in neuropathic pain. Nat. Rev. Neurol. https://doi.org/10.1038/s41582-023-00777-3 (2023).
-
Knotkova, H. et al. Neuromodulation for chronic pain. Lancet 397, 2111–2124 (2021).
-
Petzke, F., Tölle, T., Fitzcharles, M.-A. & Häuser, W. Cannabis-based medicines and medical cannabis for chronic neuropathic pain. CNS Drugs 36, 31–44 (2021).
-
Mbinta, J. F., Nguyen, B. P., Awuni, P. M. A., Paynter, J. & Simpson, C. R. Post-licensure zoster vaccine effectiveness against herpes zoster and postherpetic neuralgia in older adults: a systematic review and meta-analysis. Lancet Healthy Longev. 3, e263–e275 (2022).
-
Madley-Dowd, P. et al. Trends and patterns of antiseizure medication prescribing during pregnancy between 1995 and 2018 in the United Kingdom: a cohort study. BJOG: Int. J. Obstet. Gynaecol. 131, 15–25 (2023).
-
Cui, C. et al. Research progress on the mechanism of chronic neuropathic pain. IBRO Neurosci. Rep. 14, 80–85 (2023).
-
Mirmoosavi, M., Aminitabar, A., Mirfathollahi, A. & Shalchyan, V. Exploring altered oscillatory activity in the anterior cingulate cortex after nerve injury: Insights into mechanisms of neuropathic allodynia. Neurobiol. Dis. 190, 106381 (2024).
-
Peng, J. et al. The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Mol. Brain 14, 99 (2021).
-
Qin, Q. et al. TREM2, microglia, and Alzheimer’s disease. Mech. Ageing Dev. 195, 111438 (2021).
-
Al-Ghraiybah, N. F. et al. Glial cell-mediated neuroinflammation in Alzheimer’s disease. Int. J. Mol. Sci. 23, 10572 (2022).
-
Knezevic, N. N., Candido, K. D., Vlaeyen, J. W. S., Van Zundert, J. & Cohen, S. P. Low back pain. Lancet 398, 78–92 (2021).
-
PAPADOPOULOU, M. et al. Non-pharmacological interventions on pain and quality of life in chemotherapy induced polyneuropathy: systematic review and meta-analysis. Vivo 37, 47–56 (2023).
-
Ben Aziz, M. & Cascella, M. Neurolytic procedures. In StatPearls (StatPearls Publishing, 2024).
-
De Poortere, A., Van der Cruyssen, F. & Politis, C. The benefit of surgical management in post-traumatic trigeminal neuropathy: a retrospective analysis. Int. J. Oral. Maxillofac. Surg. 50, 132–138 (2021).
-
Kachrani, R., Santana, A., Rogala, B. & Pawasauskas, J. Chemotherapy-induced peripheral neuropathy: causative agents, preventative strategies, and treatment approaches. J. Pain. Palliat. Care Pharmacother. 34, 141–152 (2020).
-
Felsted, J. A., Meng, A., Ameroso, D. & Rios, M. Sex-specific effects of α2δ-1 in the ventromedial hypothalamus of female mice controlling glucose and lipid balance. Endocrinology 161, bqaa068 (2020).
-
Bhatti, J. S. et al. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 1869, 166798 (2023).
-
Liu, Y. et al. Bruton’s tyrosine kinase-bearing B cells and microglia in neuromyelitis optica spectrum disorder. J. Neuroinflammation 20, 309 (2023).
-
Keating, S. S., San Gil, R., Swanson, M. E. V., Scotter, E. L. & Walker, A. K. TDP-43 pathology: from noxious assembly to therapeutic removal. Prog. Neurobiol. 211, 102229 (2022).
-
Jo, M. et al. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp. Mol. Med. 52, 1652–1662 (2020).
-
Liao, Y.-Z., Ma, J. & Dou, J.-Z. The role of TDP-43 in neurodegenerative disease. Mol. Neurobiol. 59, 4223–4241 (2022).
-
Licht-Murava, A. et al. Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines. Sci. Adv. 9, eade1282 (2023).
-
Chountoulesi, M., Selianitis, D., Pispas, S. & Pippa, N. Recent advances on PEO-PCL block and graft copolymers as nanocarriers for drug delivery applications. Materials 16, 2298 (2023).
-
Asl, F. D. et al. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine 18, 279–302 (2023).
-
Xie, M. et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat. Neurosci. 25, 26–38 (2021).
-
Zhang, L. et al. Enterovirus D68 infection induces TDP-43 cleavage, aggregation, and neurotoxicity. J. Virol. 97, e0042523 (2023).
-
Tseng, Y.-L. et al. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera. J. Biomed. Sci. 30, 27 (2023).
-
Spurgat, M. S. & Tang, S.-J. Single-cell RNA-sequencing: astrocyte and microglial heterogeneity in health and disease. Cells 11, 2021 (2022).
-
Ou, M. et al. Spinal astrocytic MeCP2 regulates Kir4.1 for the maintenance of chronic hyperalgesia in neuropathic pain. Prog. Neurobiol. 224, 102436 (2023).
-
Zambusi, A. et al. TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat. Neurosci. 25, 1608–1625 (2022).
-
Ko, V. I., Ong, K., Cleveland, D. W., Yu, H. & Ravits, J. M. CK1δ/ε kinases regulate TDP-43 phosphorylation and are therapeutic targets for ALS-related TDP-43 hyperphosphorylation. Neurobiol. Dis. 196, 106516 (2024).
-
Gao, J. et al. TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer’s disease. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 1866, 165580 (2020).
-
Ulbrich, K., Hekmatara, T., Herbert, E. & Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur. J. Pharm. Biopharm. 71, 251–256 (2009).
-
Hu, K. et al. Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J. Control. Release 134, 55–61 (2009).
-
Chen, C. et al. Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl. Mater. Interfaces 9, 5864–5873 (2017).
-
Hisaoka-Nakashima, K. et al. High-mobility group box 1-mediated hippocampal microglial activation induces cognitive impairment in mice with neuropathic pain. Exp. Neurol. 355, 114146 (2022).
-
Tsuchihara, T. et al. Nonviral retrograde gene transfer of human hepatocyte growth factor improves neuropathic pain-related phenomena in rats. Mol. Ther. 17, 42–50 (2009).
-
Chang, G. H.-F. Phosphatidylserine-dependent phagocytosis of apoptotic glioma cells by normal human microglia, astrocytes, and glioma cells. Neuro-Oncol. 2, 174–183 (2000).
-
Fan, Y.-Y. & Huo, J. A1/A2 astrocytes in central nervous system injuries and diseases: angels or devils?. Neurochem. Int. 148, 105080 (2021).
-
Guo, Y. et al. Psoralen protects neurons and alleviates neuroinflammation by regulating microglial M1/M2 polarization via inhibition of the Fyn-PKCδ pathway. Int. Immunopharmacol. 137, 112493 (2024).
-
Chen, K. et al. cGAS-STING-mediated IFN-I response in host defense and neuroinflammatory diseases. Curr. Neuropharmacol. 20, 362–371 (2022).
-
Shiga, A. et al. Alteration of POLDIP3 Splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS ONE 7, e43120 (2012).
-
Daigo, E. et al. Photobiomodulation activates microglia/astrocytes and relieves neuropathic pain in inferior alveolar nerve injury. Photobiomodul. Photomed., Laser Surg. 41, 694–702 (2023).
-
Magrath Guimet, N., Zapata-Restrepo, L. M. & Miller, B. L. Advances in treatment of frontotemporal dementia. J. Neuropsychiatry Clin. Neurosci. 34, 316–327 (2022).
-
Yu, H. et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371, eabb4309 (2021).
-
Pakravan, D., Orlando, G., Bercier, V. & Van Den Bosch, L. Role and therapeutic potential of liquid–liquid phase separation in amyotrophic lateral sclerosis. J. Mol. Cell Biol. 13, 15–28 (2020).
-
Dubowsky, M., Theunissen, F., Carr, J. M. & Rogers, M.-L. The molecular link between TDP-43, endogenous retroviruses and inflammatory neurodegeneration in amyotrophic lateral sclerosis: a potential target for triumeq, an antiretroviral therapy. Mol. Neurobiol. 60, 6330–6345 (2023).
-
Kim, J.-H. et al. Identification of genetic modifiers of TDP-43: inflammatory activation of astrocytes for neuroinflammation. Cells 10, 676 (2021).
-
Lou, Q., Zhan, M.-W., Lai, Y.-Q., Zhan, X.-X. & Shang, X.-J. Mechanism of regulation of CNP rat model by oxalis decoction via cGAS-STING signaling pathway. Zhonghua Nan Ke Xue 29, 973–979 (2023).
-
Wu, W. et al. Pharmacological inhibition of the cGAS-STING signaling pathway suppresses microglial M1-polarization in the spinal cord and attenuates neuropathic pain. Neuropharmacology 217, 109206 (2022).
-
Kong, E. et al. HSV-1 reactivation results in post-herpetic neuralgia by upregulating Prmt6 and inhibiting cGAS-STING. Brain 147, 2552–2565 (2024).
-
Kwon, H. S. & Koh, S.-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9, 42 (2020).
-
Rodríguez-Gómez, J. A. et al. Microglia: agents of the CNS pro-inflammatory response. Cells 9, 1717 (2020).
-
Zhang, L.-Q. et al. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J. Neuroinflammation 19, 129 (2022).
-
Zeboudj, L. et al. Silencing miR-21-5p in sensory neurons reverses neuropathic allodynia via activation of TGF-β–related pathway in macrophages. J. Clin. Invest. 133, e164472 (2023).
-
Chen, O., Luo, X. & Ji, R.-R. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. Med. Rev. 3, 381–407 (2023).
-
Gillette, A. A., DeStefanis, R. A., Pritzl, S. L., Deming, D. A. & Skala, M. C. Inhibition of B-cell lymphoma 2 family proteins alters optical redox ratio, mitochondrial polarization, and cell energetics independent of cell state. J. Biomed. Opt. 27, 056505 (2022).
-
Dong, B. et al. A D-π-A-π-D type structure-based fluorescent probe for revealing the fluctuations of the ER polarity during ferroptosis. Anal. Chim. Acta 1275, 341571 (2023).
-
Zhang, Q. et al. Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis. Cell Biol. Toxicol. 39, 467–481 (2022).
-
Chaudhry, N. et al. Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy 18, 2443–2458 (2022).
-
Baron, R., Binder, A. & Wasner, G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 9, 807–819 (2010).
-
Finnerup, N. B., Kuner, R. & Jensen, T. S. Neuropathic pain: from mechanisms to treatment. Physiol. Rev. 101, 259–301 (2021).
-
Alles, S. R. A. & Smith, P. A. Etiology and pharmacology of neuropathic pain. Pharmacol. Rev. 70, 315–347 (2018).
-
Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Primers 3, 17002 (2017).
-
Xiao, Y., Wang, G., He, G., Qin, W. & Shi, Y. Rab8a/SNARE complex activation promotes vesicle anchoring and transport in spinal astrocytes to drive neuropathic pain. Biomol. Biomed. 24, 1290–1300 (2024).
-
Weber, D. et al. Interaction of poly(l-lysine)/polysaccharide complex nanoparticles with human vascular endothelial cells. Nanomaterials 8, 358 (2018).
-
Hua, T. et al. PRMT6 deficiency or inhibition alleviates neuropathic pain by decreasing glycolysis and inflammation in microglia. Brain, Behav., Immun. 118, 101–114 (2024).
-
Bang, S. et al. Activation of GPR37 in macrophages confers protection against infection-induced sepsis and pain-like behaviour in mice. Nat. Commun. 12, 1704 (2021).
