Transferrin-phosphatidylserine liposomes target TDP-43 and neuroinflammation in male mice with neuropathic pain

transferrin-phosphatidylserine-liposomes-target-tdp-43-and-neuroinflammation-in-male-mice-with-neuropathic-pain
Transferrin-phosphatidylserine liposomes target TDP-43 and neuroinflammation in male mice with neuropathic pain

References

  1. Fiore, N. T., Debs, S. R., Hayes, J. P., Duffy, S. S. & Moalem-Taylor, G. Pain-resolving immune mechanisms in neuropathic pain. Nat. Rev. Neurol. https://doi.org/10.1038/s41582-023-00777-3 (2023).

    Google Scholar 

  2. Knotkova, H. et al. Neuromodulation for chronic pain. Lancet 397, 2111–2124 (2021).

    Google Scholar 

  3. Petzke, F., Tölle, T., Fitzcharles, M.-A. & Häuser, W. Cannabis-based medicines and medical cannabis for chronic neuropathic pain. CNS Drugs 36, 31–44 (2021).

    Google Scholar 

  4. Mbinta, J. F., Nguyen, B. P., Awuni, P. M. A., Paynter, J. & Simpson, C. R. Post-licensure zoster vaccine effectiveness against herpes zoster and postherpetic neuralgia in older adults: a systematic review and meta-analysis. Lancet Healthy Longev. 3, e263–e275 (2022).

    Google Scholar 

  5. Madley-Dowd, P. et al. Trends and patterns of antiseizure medication prescribing during pregnancy between 1995 and 2018 in the United Kingdom: a cohort study. BJOG: Int. J. Obstet. Gynaecol. 131, 15–25 (2023).

    Google Scholar 

  6. Cui, C. et al. Research progress on the mechanism of chronic neuropathic pain. IBRO Neurosci. Rep. 14, 80–85 (2023).

    Google Scholar 

  7. Mirmoosavi, M., Aminitabar, A., Mirfathollahi, A. & Shalchyan, V. Exploring altered oscillatory activity in the anterior cingulate cortex after nerve injury: Insights into mechanisms of neuropathic allodynia. Neurobiol. Dis. 190, 106381 (2024).

    Google Scholar 

  8. Peng, J. et al. The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Mol. Brain 14, 99 (2021).

    Google Scholar 

  9. Qin, Q. et al. TREM2, microglia, and Alzheimer’s disease. Mech. Ageing Dev. 195, 111438 (2021).

    Google Scholar 

  10. Al-Ghraiybah, N. F. et al. Glial cell-mediated neuroinflammation in Alzheimer’s disease. Int. J. Mol. Sci. 23, 10572 (2022).

    Google Scholar 

  11. Knezevic, N. N., Candido, K. D., Vlaeyen, J. W. S., Van Zundert, J. & Cohen, S. P. Low back pain. Lancet 398, 78–92 (2021).

    Google Scholar 

  12. PAPADOPOULOU, M. et al. Non-pharmacological interventions on pain and quality of life in chemotherapy induced polyneuropathy: systematic review and meta-analysis. Vivo 37, 47–56 (2023).

    Google Scholar 

  13. Ben Aziz, M. & Cascella, M. Neurolytic procedures. In StatPearls (StatPearls Publishing, 2024).

  14. De Poortere, A., Van der Cruyssen, F. & Politis, C. The benefit of surgical management in post-traumatic trigeminal neuropathy: a retrospective analysis. Int. J. Oral. Maxillofac. Surg. 50, 132–138 (2021).

    Google Scholar 

  15. Kachrani, R., Santana, A., Rogala, B. & Pawasauskas, J. Chemotherapy-induced peripheral neuropathy: causative agents, preventative strategies, and treatment approaches. J. Pain. Palliat. Care Pharmacother. 34, 141–152 (2020).

    Google Scholar 

  16. Felsted, J. A., Meng, A., Ameroso, D. & Rios, M. Sex-specific effects of α2δ-1 in the ventromedial hypothalamus of female mice controlling glucose and lipid balance. Endocrinology 161, bqaa068 (2020).

    Google Scholar 

  17. Bhatti, J. S. et al. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 1869, 166798 (2023).

    Google Scholar 

  18. Liu, Y. et al. Bruton’s tyrosine kinase-bearing B cells and microglia in neuromyelitis optica spectrum disorder. J. Neuroinflammation 20, 309 (2023).

    Google Scholar 

  19. Keating, S. S., San Gil, R., Swanson, M. E. V., Scotter, E. L. & Walker, A. K. TDP-43 pathology: from noxious assembly to therapeutic removal. Prog. Neurobiol. 211, 102229 (2022).

    Google Scholar 

  20. Jo, M. et al. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp. Mol. Med. 52, 1652–1662 (2020).

    Google Scholar 

  21. Liao, Y.-Z., Ma, J. & Dou, J.-Z. The role of TDP-43 in neurodegenerative disease. Mol. Neurobiol. 59, 4223–4241 (2022).

    Google Scholar 

  22. Licht-Murava, A. et al. Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines. Sci. Adv. 9, eade1282 (2023).

    Google Scholar 

  23. Chountoulesi, M., Selianitis, D., Pispas, S. & Pippa, N. Recent advances on PEO-PCL block and graft copolymers as nanocarriers for drug delivery applications. Materials 16, 2298 (2023).

    Google Scholar 

  24. Asl, F. D. et al. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine 18, 279–302 (2023).

    Google Scholar 

  25. Xie, M. et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat. Neurosci. 25, 26–38 (2021).

    Google Scholar 

  26. Zhang, L. et al. Enterovirus D68 infection induces TDP-43 cleavage, aggregation, and neurotoxicity. J. Virol. 97, e0042523 (2023).

    Google Scholar 

  27. Tseng, Y.-L. et al. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera. J. Biomed. Sci. 30, 27 (2023).

    Google Scholar 

  28. Spurgat, M. S. & Tang, S.-J. Single-cell RNA-sequencing: astrocyte and microglial heterogeneity in health and disease. Cells 11, 2021 (2022).

    Google Scholar 

  29. Ou, M. et al. Spinal astrocytic MeCP2 regulates Kir4.1 for the maintenance of chronic hyperalgesia in neuropathic pain. Prog. Neurobiol. 224, 102436 (2023).

    Google Scholar 

  30. Zambusi, A. et al. TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat. Neurosci. 25, 1608–1625 (2022).

    Google Scholar 

  31. Ko, V. I., Ong, K., Cleveland, D. W., Yu, H. & Ravits, J. M. CK1δ/ε kinases regulate TDP-43 phosphorylation and are therapeutic targets for ALS-related TDP-43 hyperphosphorylation. Neurobiol. Dis. 196, 106516 (2024).

    Google Scholar 

  32. Gao, J. et al. TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer’s disease. Biochim. Biophys. Acta (BBA) – Mol. Basis Dis. 1866, 165580 (2020).

    Google Scholar 

  33. Ulbrich, K., Hekmatara, T., Herbert, E. & Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur. J. Pharm. Biopharm. 71, 251–256 (2009).

    Google Scholar 

  34. Hu, K. et al. Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J. Control. Release 134, 55–61 (2009).

    Google Scholar 

  35. Chen, C. et al. Peptide-22 and cyclic RGD functionalized liposomes for glioma targeting drug delivery overcoming BBB and BBTB. ACS Appl. Mater. Interfaces 9, 5864–5873 (2017).

    Google Scholar 

  36. Hisaoka-Nakashima, K. et al. High-mobility group box 1-mediated hippocampal microglial activation induces cognitive impairment in mice with neuropathic pain. Exp. Neurol. 355, 114146 (2022).

    Google Scholar 

  37. Tsuchihara, T. et al. Nonviral retrograde gene transfer of human hepatocyte growth factor improves neuropathic pain-related phenomena in rats. Mol. Ther. 17, 42–50 (2009).

    Google Scholar 

  38. Chang, G. H.-F. Phosphatidylserine-dependent phagocytosis of apoptotic glioma cells by normal human microglia, astrocytes, and glioma cells. Neuro-Oncol. 2, 174–183 (2000).

    Google Scholar 

  39. Fan, Y.-Y. & Huo, J. A1/A2 astrocytes in central nervous system injuries and diseases: angels or devils?. Neurochem. Int. 148, 105080 (2021).

    Google Scholar 

  40. Guo, Y. et al. Psoralen protects neurons and alleviates neuroinflammation by regulating microglial M1/M2 polarization via inhibition of the Fyn-PKCδ pathway. Int. Immunopharmacol. 137, 112493 (2024).

    Google Scholar 

  41. Chen, K. et al. cGAS-STING-mediated IFN-I response in host defense and neuroinflammatory diseases. Curr. Neuropharmacol. 20, 362–371 (2022).

    Google Scholar 

  42. Shiga, A. et al. Alteration of POLDIP3 Splicing associated with loss of function of TDP-43 in tissues affected with ALS. PLoS ONE 7, e43120 (2012).

    Google Scholar 

  43. Daigo, E. et al. Photobiomodulation activates microglia/astrocytes and relieves neuropathic pain in inferior alveolar nerve injury. Photobiomodul. Photomed., Laser Surg. 41, 694–702 (2023).

    Google Scholar 

  44. Magrath Guimet, N., Zapata-Restrepo, L. M. & Miller, B. L. Advances in treatment of frontotemporal dementia. J. Neuropsychiatry Clin. Neurosci. 34, 316–327 (2022).

    Google Scholar 

  45. Yu, H. et al. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 371, eabb4309 (2021).

    Google Scholar 

  46. Pakravan, D., Orlando, G., Bercier, V. & Van Den Bosch, L. Role and therapeutic potential of liquid–liquid phase separation in amyotrophic lateral sclerosis. J. Mol. Cell Biol. 13, 15–28 (2020).

    Google Scholar 

  47. Dubowsky, M., Theunissen, F., Carr, J. M. & Rogers, M.-L. The molecular link between TDP-43, endogenous retroviruses and inflammatory neurodegeneration in amyotrophic lateral sclerosis: a potential target for triumeq, an antiretroviral therapy. Mol. Neurobiol. 60, 6330–6345 (2023).

    Google Scholar 

  48. Kim, J.-H. et al. Identification of genetic modifiers of TDP-43: inflammatory activation of astrocytes for neuroinflammation. Cells 10, 676 (2021).

    Google Scholar 

  49. Lou, Q., Zhan, M.-W., Lai, Y.-Q., Zhan, X.-X. & Shang, X.-J. Mechanism of regulation of CNP rat model by oxalis decoction via cGAS-STING signaling pathway. Zhonghua Nan Ke Xue 29, 973–979 (2023).

    Google Scholar 

  50. Wu, W. et al. Pharmacological inhibition of the cGAS-STING signaling pathway suppresses microglial M1-polarization in the spinal cord and attenuates neuropathic pain. Neuropharmacology 217, 109206 (2022).

    Google Scholar 

  51. Kong, E. et al. HSV-1 reactivation results in post-herpetic neuralgia by upregulating Prmt6 and inhibiting cGAS-STING. Brain 147, 2552–2565 (2024).

    Google Scholar 

  52. Kwon, H. S. & Koh, S.-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9, 42 (2020).

    Google Scholar 

  53. Rodríguez-Gómez, J. A. et al. Microglia: agents of the CNS pro-inflammatory response. Cells 9, 1717 (2020).

    Google Scholar 

  54. Zhang, L.-Q. et al. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J. Neuroinflammation 19, 129 (2022).

    Google Scholar 

  55. Zeboudj, L. et al. Silencing miR-21-5p in sensory neurons reverses neuropathic allodynia via activation of TGF-β–related pathway in macrophages. J. Clin. Invest. 133, e164472 (2023).

    Google Scholar 

  56. Chen, O., Luo, X. & Ji, R.-R. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. Med. Rev. 3, 381–407 (2023).

    Google Scholar 

  57. Gillette, A. A., DeStefanis, R. A., Pritzl, S. L., Deming, D. A. & Skala, M. C. Inhibition of B-cell lymphoma 2 family proteins alters optical redox ratio, mitochondrial polarization, and cell energetics independent of cell state. J. Biomed. Opt. 27, 056505 (2022).

    Google Scholar 

  58. Dong, B. et al. A D-π-A-π-D type structure-based fluorescent probe for revealing the fluctuations of the ER polarity during ferroptosis. Anal. Chim. Acta 1275, 341571 (2023).

    Google Scholar 

  59. Zhang, Q. et al. Exosomes derived from hepatitis B virus-infected hepatocytes promote liver fibrosis via miR-222/TFRC axis. Cell Biol. Toxicol. 39, 467–481 (2022).

    Google Scholar 

  60. Chaudhry, N. et al. Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy 18, 2443–2458 (2022).

    Google Scholar 

  61. Baron, R., Binder, A. & Wasner, G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 9, 807–819 (2010).

    Google Scholar 

  62. Finnerup, N. B., Kuner, R. & Jensen, T. S. Neuropathic pain: from mechanisms to treatment. Physiol. Rev. 101, 259–301 (2021).

    Google Scholar 

  63. Alles, S. R. A. & Smith, P. A. Etiology and pharmacology of neuropathic pain. Pharmacol. Rev. 70, 315–347 (2018).

    Google Scholar 

  64. Colloca, L. et al. Neuropathic pain. Nat. Rev. Dis. Primers 3, 17002 (2017).

    Google Scholar 

  65. Xiao, Y., Wang, G., He, G., Qin, W. & Shi, Y. Rab8a/SNARE complex activation promotes vesicle anchoring and transport in spinal astrocytes to drive neuropathic pain. Biomol. Biomed. 24, 1290–1300 (2024).

    Google Scholar 

  66. Weber, D. et al. Interaction of poly(l-lysine)/polysaccharide complex nanoparticles with human vascular endothelial cells. Nanomaterials 8, 358 (2018).

    Google Scholar 

  67. Hua, T. et al. PRMT6 deficiency or inhibition alleviates neuropathic pain by decreasing glycolysis and inflammation in microglia. Brain, Behav., Immun. 118, 101–114 (2024).

    Google Scholar 

  68. Bang, S. et al. Activation of GPR37 in macrophages confers protection against infection-induced sepsis and pain-like behaviour in mice. Nat. Commun. 12, 1704 (2021).

    Google Scholar 

Download references