References
-
Lang, J. et al. Fitness costs restrict niche expansion by generalist niche-constructing pathogens. ISME J. 11, 374–385 (2017).
-
Gelvin, S. B. Agrobacterium-Mediated plant transformation: the biology behind the Gene-Jockeying tool. Microbiol. Mol. Biol. Rev. 67, 16–37 (2003).
-
Hou, W., Shakya, P. & Franklin, G. A perspective on Hypericum perforatum genetic transformation. Front. Plant Sci. 7, 879 (2016).
-
Ditt, R. F., Nester, E. W. & Comai, L. Plant gene expression response to Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. U S A. 98, 10954–10959 (2001).
-
Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial Flagellin. Plant J. 18, 265–276 (1999).
-
Veena., Jiang, H., Doerge, R. W. & Gelvin, S. B. Transfer of T-DNA and vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J. 35, 219–236 (2003).
-
Gohlke, J. & Deeken, R. Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant. Sci 5, (2014).
-
Brown, P. J. B., Clay, F. & H, C. J. & Agrobacterium tumefaciens: a transformative agent for fundamental insights into Host-Microbe Interactions, genome biology, chemical Signaling, and cell biology. J. Bacteriol. 205, e00005–23 (2023).
-
Etminani, F., Harighi, B., Bahramnejad, B. & Mozafari, A. A. Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BMC Plant. Biol. 24, 104 (2024).
-
Košuth, J., Hrehorová, D., Jaskolski, M. & Čellárová, E. Stress-induced expression and structure of the putative gene hyp-1 for hypericin biosynthesis. Plant. Cell. Tissue Organ. Cult. (PCTOC). 114, 207–216 (2013).
-
Bais, H. P., Vepachedu, R., Lawrence, C. B., Stermitz, F. R. & Vivanco, J. M. Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L). J. Biol. Chem. 278, 32413–32422 (2003).
-
Karppinen, K., Derzsó, E., Jaakola, L. & Hohtola, A. Molecular cloning and expression analysis of hyp-1 type PR-10 family genes in Hypericum perforatum. Front. Plant. Sci. 7, 526 (2016).
-
Sliwiak, J., Dauter, Z. & Jaskolski, M. Crystal structure of Hyp-1, a Hypericum perforatum PR-10 Protein, in complex with melatonin. Front Plant. Sci 7, (2016).
-
Hu, M. et al. Comparative analysis of the LEA gene family in seven Ipomoea species, focuses on sweet potato (Ipomoea Batatas L). BMC Plant. Biol. 24, 1256 (2024).
-
Yang, X. et al. Genome-wide identification and characterization of bZIP gene family explore the responses of PsebZIP44 and PsebZIP46 in Pseudoroegneria Libanotica under drought stress. BMC Plant. Biol. 24, 1085 (2024).
-
Kauder, F. et al. Expression of a modified Avr3a gene under the control of a synthetic pathogen-inducible promoter leads to Phytophthora infestans resistance in potato. Plant. Biotechnol. J. 23, 1683–1701 (2025).
-
Kooshki, M., Mentewab, A. & Stewart, C. N. Pathogen inducible reporting in Transgenic tobacco using a GFP construct. Plant Sci. 165, 213–219 (2003).
-
Lin, L. et al. The sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene Silencing. J. Exp. Bot. 73, 6663–6677 (2022).
-
Sasaki, K. et al. Characterization of two rice peroxidase promoters that respond to blast fungus-infection. Mol. Genet. Genomics. 278, 709–722 (2007).
-
Himmelbach, A. et al. Promoters of the barley Germin-Like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant. Cell. 22, 937–952 (2010).
-
Yi, H. et al. Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant. Cell. 18, 1575–1589 (2006).
-
Lacroix, B., Fratta, A., Hak, H., Hu, Y. & Citovsky, V. Agrobacterium virulence factors induce the expression of host DNA repair-related genes without promoting major genomic damage. Sci. Rep. 14, 24330 (2024).
-
Franklin, G. & Dias, A. C. P. Organogenesis and embryogenesis in several Hypericum perforatum genotypes. Vitro Cell. Dev. Biology – Plant. 42, 324–330 (2006).
-
Pradeep, M. & Franklin, G. Understanding the hypericin biosynthesis via reversible Inhibition of dark gland development in Hypericum perforatum L. Ind. Crops Prod. 182, 114876 (2022).
-
Murashige, T. & Skoog, F. A. Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).
-
Kuriakose, B., Ganesan, V., Thomas, G., Viswanathan, A. & Anand, N. Random amplification of genomic ends (RAGE) as an efficient method for isolation and cloning of promoters and uncloned genomic regions. Afr. J. Biotechnol. 8, 4765–4773 (2009).
-
Madeira, F. et al. The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52, W521–W525 (2024).
-
Higo, K., Ugawa, Y., Iwamoto, M. & Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297–300 (1999).
-
Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in Silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327 (2002).
-
Chow, C. N. et al. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res. 44, D1154–D1160 (2016).
-
Horsch, R. B. et al. A simple and general method for transferring genes into plants. Sci. (1979). 227, 1229–1231 (1985).
-
Ishka, M. R. et al. Natural variation in salt-induced changes in root:shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. Elife 13, RP98896 (2024).
-
Kumar, G. & Singh, A. K. Reference gene validation for qRT-PCR based gene expression studies in different developmental stages and under biotic stress in Apple. Sci. Hortic. 197, 597–606 (2015).
-
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2–∆∆CT method. Methods 25, 402–408 (2001).
-
Bais, H. P., Vepachedu, R., Lawrence, C. B., Stermitz, F. R. & Vivanco, J. M. Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L)*. J. Biol. Chem. 278, 32413–32422 (2003).
-
Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045 (2017).
-
Kong, W., Ding, L., Cheng, J. & Wang, B. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. Rice 11, 52 (2018).
-
Javed, T. & Gao, S. J. WRKY transcription factors in plant defense. Trends Genet. 39, 787–801 (2023).
-
Wyrsch, I., Domínguez-Ferreras, A., Geldner, N. & Boller, T. Tissue-specific FLAGELLIN-SENSING 2 (FLS2) expression in roots restores immune responses in Arabidopsis fls2 mutants. New Phytol. 206, 774–784 (2015).
-
Li, N. et al. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element. Plant. Biotechnol. J. 16, 771–783 (2018).
-
Košuth, J., Katkovčinová, Z., Olexová, P. & Čellárová, E. Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant. Cell. Rep. 26, 211–217 (2007).
-
Z Freitas, F. et al. The SEB-1 transcription factor binds to the STRE motif in neurospora crassa and regulates a variety of cellular processes including the stress response and reserve carbohydrate metabolism. G3 Genes|Genomes|Genetics. 6, 1327–1343 (2016).
-
Singh, K. B. & Foley, R. C. Oñate-Sánchez, L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant. Biol. 5, 430–436 (2002).
-
Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24, 469–486 (2000).
-
Vihervaara, A. et al. Transcriptional response to stress is pre-wired by promoter and enhancer architecture. Nat. Commun. 8, 255 (2017).
-
Rabeh, K., Hnini, M. & Oubohssaine, M. A comprehensive review of transcription factor-mediated regulation of secondary metabolites in plants under environmental stress. Stress Biology. 5, 15 (2025).
-
Tzfira, T., Vaidya, M. & Citovsky, V. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 20, 3596–3607 (2001).
-
Lacroix, B. & Citovsky, V. Characterization of VIP1 activity as a transcriptional regulator in vitro and in planta. Sci. Rep. 3, 2440 (2013).
-
Pitzschke, A., Djamei, A., Teige, M. & Hirt, H. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc. Natl. Acad. Sci. 106, 18414–18419 (2009).
-
Gao, Y. et al. Pseudomonas syringae activates ZAT18 to inhibit Salicylic acid accumulation by repressing EDS1 transcription for bacterial infection. New Phytol. 233, 1274–1288 (2022).
-
Anand, A. et al. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant. Physiol. 146, 703–715 (2008).
-
Ullah, C., Chen, Y. H., Ortega, M. A. & Tsai, C. J. The diversity of Salicylic acid biosynthesis and defense signaling in plants: knowledge gaps and future opportunities. Curr. Opin. Plant. Biol. 72, 102349 (2023).
-
Niemi, O. et al. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1. Stand. Genomic Sci. 12, 87 (2017).
-
Falak, N., Imran, Q. M., Hussain, A. & Yun, B. W. Transcription factors as the blitzkrieg of plant defense: A pragmatic view of nitric oxide’s role in gene regulation. Int J. Mol. Sci 22, (2021).
-
Hong, J. K. & Hwang, B. K. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants. Planta 229, 249–259 (2009).
-
Jia, X. et al. The origin and evolution of Salicylic acid signaling and biosynthesis in plants. Mol. Plant. 16, 245–259 (2023).
-
Kesarwani, M., Yoo, J. & Dong, X. Genetic interactions of TGA transcription factors in the regulation of Pathogenesis-Related genes and disease resistance in Arabidopsis. Plant. Physiol. 144, 336–346 (2007).
-
Mishra, S. et al. Salicylic acid (SA)-mediated plant immunity against biotic stresses: an insight on molecular components and signaling mechanism. Plant. Stress. 11, 100427 (2024).
-
Mou, Z., Fan, W. & Dong, X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944 (2003).
-
F Klessig, D. et al. Nitric oxide and Salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. 97, 8849–8855 (2000).
-
Ryu, H. et al. Flagellin Sensing, Signaling, and immune responses in plants. Plant. Commun. https://doi.org/10.1016/j.xplc.2025.101383 (2025).
