Transgenic validation of a promoter strongly inducible by Agrobacterium tumefaciens

transgenic-validation-of-a-promoter-strongly-inducible-by-agrobacterium-tumefaciens
Transgenic validation of a promoter strongly inducible by Agrobacterium tumefaciens

References

  1. Lang, J. et al. Fitness costs restrict niche expansion by generalist niche-constructing pathogens. ISME J. 11, 374–385 (2017).

    Google Scholar 

  2. Gelvin, S. B. Agrobacterium-Mediated plant transformation: the biology behind the Gene-Jockeying tool. Microbiol. Mol. Biol. Rev. 67, 16–37 (2003).

    Google Scholar 

  3. Hou, W., Shakya, P. & Franklin, G. A perspective on Hypericum perforatum genetic transformation. Front. Plant Sci. 7, 879 (2016).

    Google Scholar 

  4. Ditt, R. F., Nester, E. W. & Comai, L. Plant gene expression response to Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. U S A. 98, 10954–10959 (2001).

    Google Scholar 

  5. Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial Flagellin. Plant J. 18, 265–276 (1999).

    Google Scholar 

  6. Veena., Jiang, H., Doerge, R. W. & Gelvin, S. B. Transfer of T-DNA and vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J. 35, 219–236 (2003).

    Google Scholar 

  7. Gohlke, J. & Deeken, R. Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant. Sci 5, (2014).

  8. Brown, P. J. B., Clay, F. & H, C. J. & Agrobacterium tumefaciens: a transformative agent for fundamental insights into Host-Microbe Interactions, genome biology, chemical Signaling, and cell biology. J. Bacteriol. 205, e00005–23 (2023).

    Google Scholar 

  9. Etminani, F., Harighi, B., Bahramnejad, B. & Mozafari, A. A. Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BMC Plant. Biol. 24, 104 (2024).

    Google Scholar 

  10. Košuth, J., Hrehorová, D., Jaskolski, M. & Čellárová, E. Stress-induced expression and structure of the putative gene hyp-1 for hypericin biosynthesis. Plant. Cell. Tissue Organ. Cult. (PCTOC). 114, 207–216 (2013).

    Google Scholar 

  11. Bais, H. P., Vepachedu, R., Lawrence, C. B., Stermitz, F. R. & Vivanco, J. M. Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L). J. Biol. Chem. 278, 32413–32422 (2003).

    Google Scholar 

  12. Karppinen, K., Derzsó, E., Jaakola, L. & Hohtola, A. Molecular cloning and expression analysis of hyp-1 type PR-10 family genes in Hypericum perforatum. Front. Plant. Sci. 7, 526 (2016).

    Google Scholar 

  13. Sliwiak, J., Dauter, Z. & Jaskolski, M. Crystal structure of Hyp-1, a Hypericum perforatum PR-10 Protein, in complex with melatonin. Front Plant. Sci 7, (2016).

  14. Hu, M. et al. Comparative analysis of the LEA gene family in seven Ipomoea species, focuses on sweet potato (Ipomoea Batatas L). BMC Plant. Biol. 24, 1256 (2024).

    Google Scholar 

  15. Yang, X. et al. Genome-wide identification and characterization of bZIP gene family explore the responses of PsebZIP44 and PsebZIP46 in Pseudoroegneria Libanotica under drought stress. BMC Plant. Biol. 24, 1085 (2024).

    Google Scholar 

  16. Kauder, F. et al. Expression of a modified Avr3a gene under the control of a synthetic pathogen-inducible promoter leads to Phytophthora infestans resistance in potato. Plant. Biotechnol. J. 23, 1683–1701 (2025).

    Google Scholar 

  17. Kooshki, M., Mentewab, A. & Stewart, C. N. Pathogen inducible reporting in Transgenic tobacco using a GFP construct. Plant Sci. 165, 213–219 (2003).

    Google Scholar 

  18. Lin, L. et al. The sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene Silencing. J. Exp. Bot. 73, 6663–6677 (2022).

    Google Scholar 

  19. Sasaki, K. et al. Characterization of two rice peroxidase promoters that respond to blast fungus-infection. Mol. Genet. Genomics. 278, 709–722 (2007).

    Google Scholar 

  20. Himmelbach, A. et al. Promoters of the barley Germin-Like GER4 gene cluster enable strong transgene expression in response to pathogen attack. Plant. Cell. 22, 937–952 (2010).

    Google Scholar 

  21. Yi, H. et al. Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant. Cell. 18, 1575–1589 (2006).

    Google Scholar 

  22. Lacroix, B., Fratta, A., Hak, H., Hu, Y. & Citovsky, V. Agrobacterium virulence factors induce the expression of host DNA repair-related genes without promoting major genomic damage. Sci. Rep. 14, 24330 (2024).

    Google Scholar 

  23. Franklin, G. & Dias, A. C. P. Organogenesis and embryogenesis in several Hypericum perforatum genotypes. Vitro Cell. Dev. Biology – Plant. 42, 324–330 (2006).

    Google Scholar 

  24. Pradeep, M. & Franklin, G. Understanding the hypericin biosynthesis via reversible Inhibition of dark gland development in Hypericum perforatum L. Ind. Crops Prod. 182, 114876 (2022).

    Google Scholar 

  25. Murashige, T. & Skoog, F. A. Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Google Scholar 

  26. Kuriakose, B., Ganesan, V., Thomas, G., Viswanathan, A. & Anand, N. Random amplification of genomic ends (RAGE) as an efficient method for isolation and cloning of promoters and uncloned genomic regions. Afr. J. Biotechnol. 8, 4765–4773 (2009).

    Google Scholar 

  27. Madeira, F. et al. The EMBL-EBI job dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52, W521–W525 (2024).

    Google Scholar 

  28. Higo, K., Ugawa, Y., Iwamoto, M. & Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297–300 (1999).

    Google Scholar 

  29. Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in Silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327 (2002).

    Google Scholar 

  30. Chow, C. N. et al. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res. 44, D1154–D1160 (2016).

    Google Scholar 

  31. Horsch, R. B. et al. A simple and general method for transferring genes into plants. Sci. (1979). 227, 1229–1231 (1985).

    Google Scholar 

  32. Ishka, M. R. et al. Natural variation in salt-induced changes in root:shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. Elife 13, RP98896 (2024).

    Google Scholar 

  33. Kumar, G. & Singh, A. K. Reference gene validation for qRT-PCR based gene expression studies in different developmental stages and under biotic stress in Apple. Sci. Hortic. 197, 597–606 (2015).

    Google Scholar 

  34. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2–∆∆CT method. Methods 25, 402–408 (2001).

    Google Scholar 

  35. Bais, H. P., Vepachedu, R., Lawrence, C. B., Stermitz, F. R. & Vivanco, J. M. Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L)*. J. Biol. Chem. 278, 32413–32422 (2003).

    Google Scholar 

  36. Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045 (2017).

    Google Scholar 

  37. Kong, W., Ding, L., Cheng, J. & Wang, B. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. Rice 11, 52 (2018).

    Google Scholar 

  38. Javed, T. & Gao, S. J. WRKY transcription factors in plant defense. Trends Genet. 39, 787–801 (2023).

    Google Scholar 

  39. Wyrsch, I., Domínguez-Ferreras, A., Geldner, N. & Boller, T. Tissue-specific FLAGELLIN-SENSING 2 (FLS2) expression in roots restores immune responses in Arabidopsis fls2 mutants. New Phytol. 206, 774–784 (2015).

    Google Scholar 

  40. Li, N. et al. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element. Plant. Biotechnol. J. 16, 771–783 (2018).

    Google Scholar 

  41. Košuth, J., Katkovčinová, Z., Olexová, P. & Čellárová, E. Expression of the hyp-1 gene in early stages of development of Hypericum perforatum L. Plant. Cell. Rep. 26, 211–217 (2007).

    Google Scholar 

  42. Z Freitas, F. et al. The SEB-1 transcription factor binds to the STRE motif in neurospora crassa and regulates a variety of cellular processes including the stress response and reserve carbohydrate metabolism. G3 Genes|Genomes|Genetics. 6, 1327–1343 (2016).

    Google Scholar 

  43. Singh, K. B. & Foley, R. C. Oñate-Sánchez, L. Transcription factors in plant defense and stress responses. Curr. Opin. Plant. Biol. 5, 430–436 (2002).

    Google Scholar 

  44. Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24, 469–486 (2000).

    Google Scholar 

  45. Vihervaara, A. et al. Transcriptional response to stress is pre-wired by promoter and enhancer architecture. Nat. Commun. 8, 255 (2017).

    Google Scholar 

  46. Rabeh, K., Hnini, M. & Oubohssaine, M. A comprehensive review of transcription factor-mediated regulation of secondary metabolites in plants under environmental stress. Stress Biology. 5, 15 (2025).

    Google Scholar 

  47. Tzfira, T., Vaidya, M. & Citovsky, V. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 20, 3596–3607 (2001).

    Google Scholar 

  48. Lacroix, B. & Citovsky, V. Characterization of VIP1 activity as a transcriptional regulator in vitro and in planta. Sci. Rep. 3, 2440 (2013).

    Google Scholar 

  49. Pitzschke, A., Djamei, A., Teige, M. & Hirt, H. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc. Natl. Acad. Sci. 106, 18414–18419 (2009).

    Google Scholar 

  50. Gao, Y. et al. Pseudomonas syringae activates ZAT18 to inhibit Salicylic acid accumulation by repressing EDS1 transcription for bacterial infection. New Phytol. 233, 1274–1288 (2022).

    Google Scholar 

  51. Anand, A. et al. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant. Physiol. 146, 703–715 (2008).

    Google Scholar 

  52. Ullah, C., Chen, Y. H., Ortega, M. A. & Tsai, C. J. The diversity of Salicylic acid biosynthesis and defense signaling in plants: knowledge gaps and future opportunities. Curr. Opin. Plant. Biol. 72, 102349 (2023).

    Google Scholar 

  53. Niemi, O. et al. Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1. Stand. Genomic Sci. 12, 87 (2017).

    Google Scholar 

  54. Falak, N., Imran, Q. M., Hussain, A. & Yun, B. W. Transcription factors as the blitzkrieg of plant defense: A pragmatic view of nitric oxide’s role in gene regulation. Int J. Mol. Sci 22, (2021).

  55. Hong, J. K. & Hwang, B. K. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants. Planta 229, 249–259 (2009).

    Google Scholar 

  56. Jia, X. et al. The origin and evolution of Salicylic acid signaling and biosynthesis in plants. Mol. Plant. 16, 245–259 (2023).

    Google Scholar 

  57. Kesarwani, M., Yoo, J. & Dong, X. Genetic interactions of TGA transcription factors in the regulation of Pathogenesis-Related genes and disease resistance in Arabidopsis. Plant. Physiol. 144, 336–346 (2007).

    Google Scholar 

  58. Mishra, S. et al. Salicylic acid (SA)-mediated plant immunity against biotic stresses: an insight on molecular components and signaling mechanism. Plant. Stress. 11, 100427 (2024).

    Google Scholar 

  59. Mou, Z., Fan, W. & Dong, X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944 (2003).

    Google Scholar 

  60. F Klessig, D. et al. Nitric oxide and Salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. 97, 8849–8855 (2000).

    Google Scholar 

  61. Ryu, H. et al. Flagellin Sensing, Signaling, and immune responses in plants. Plant. Commun. https://doi.org/10.1016/j.xplc.2025.101383 (2025).

    Google Scholar 

Download references