References
-
Smith, N. W., Fletcher, A. J., Hill, J. P. & McNabb, W. C. Modeling the contribution of milk to global nutrition. Front. Nutr. 8, 716100 (2022).
-
Behm, K. et al. Comparison of carbon footprint and water scarcity footprint of milk protein produced by cellular agriculture and the dairy industry. Int. J. Life Cycle Assess. 27 (8), 1017–1034 (2022).
-
Andreas, N. J., Kampmann, B. & Le-Doare, K. M. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 91 (11), 629–635 (2015).
-
Heine, W. E., Klein, P. D. & Reeds, P. J. The importance of α-lactalbumin in infant nutrition. J. Nutr. 121 (3), 277–283 (1991).
-
Permyakov, E. A. α-Lactalbumin, amazing calcium-binding protein. Biomolecules 10 (9), 1210 (2020).
-
Giuffrida, M. G. et al. The unusual amino acid triplet Asn-Ile-Cys is a glycosylation consensus site in human alpha-lactalbumin. J. Protein Chem. 16 (8), 747–753. https://doi.org/10.1023/a:1026359715821 (1997).
-
Kunz, C. & Lönnerdal, B. Re-evaluation of the Whey protein/casein ratio of human milk. Acta Paediatr. 81 (2), 107–112 (1992).
-
Layman, D. K., Lönnerdal, B. & Fernstrom, J. D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 76 (6), 444–460 (2018).
-
Enomoto, H. et al. Glycation and phosphorylation of α-lactalbumin by dry heating: effect on protein structure and physiological functions. J. Dairy Sci. 92 (7), 3057–3068 (2009).
-
Lien, E. L. Infant formulas with increased concentrations of α-lactalbumin. Am. J. Clin. Nutr. 77 (6), 1555S–1558S (2003).
-
Lönnerdal, B. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 99 (3), 712S–717S (2014).
-
Mossberg, A. K., Mok, H., Morozova-Roche, K., Svanborg, C. & L. A., & Structure and function of human α‐lactalbumin made lethal to tumor cells (HAMLET)‐type complexes. FEBS J. 277 (22), 4614–4625 (2010).
-
Permyakov, E. A. & Berliner, L. J. α-Lactalbumin: structure and function. FEBS Lett. 473 (3), 269–274 (2000).
-
Hettinga, K. & Bijl, E. Can Recombinant milk proteins replace those produced by animals? Curr. Opin. Biotechnol. 75, 102690 (2022).
-
Awasthi, V. et al. Contaminants in milk and impact of heating: an assessment study. Indian J. Public Health. 56 (1), 95–99 (2012).
-
Geistlinger, T. et al. Recombinant components and compositions for use in food products. Google Patents (2022).
-
Vestergaard, M., Chan, S. H. J. & Jensen, P. R. Can microbes compete with cows for sustainable protein production-A feasibility study on high quality protein. Sci. Rep. 6 (1), 36421 (2016).
-
Chaudhuri, T. K. et al. Effect of the extra N-terminal methionine residue on the stability and folding of Recombinant α-lactalbumin expressed in Escherichia coli. J. Mol. Biol. 285 (3), 1179–1194 (1999).
-
Overton, T. W. Recombinant protein production in bacterial hosts. Drug Discovery Today. 19 (5), 590–601 (2014).
-
Deng, M. et al. Efficient bioproduction of human milk Alpha-Lactalbumin in Komagataella phaffii. J. Agric. Food Chem. 70 (8), 2664–2672 (2022).
-
Saito, A., Usui, M., Song, Y., Azakami, H. & Kato, A. Secretion of glycosylated α-lactalbumin in yeast Pichia pastoris. J. Biochem. 132 (1), 77–82 (2002).
-
Demain, A. L. & Vaishnav, P. Production of Recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27 (3), 297–306 (2009).
-
Long, C. Transgenic livestock for agriculture and biomedical applications. In BMC Proceedings 8 (4), O29. https://doi.org/10.1186/1753-6561-8-S4-O29 (BioMed Central, 2014).
-
Bicar, E. H. et al. Transgenic maize endosperm containing a milk protein has improved amino acid balance. Transgenic Res. 17, 59–71 (2008).
-
Salmon, V. et al. Production of human lactoferrin in Transgenic tobacco plants. Protein Exp. Purif. 13 (1), 127–135 (1998).
-
Bock, R. Structure, function, and inheritance of plastid genomes. In Cell and Molecular Biology of Plastids 29–63. (Springer, 2007).
-
Chebolu, S. & Daniell, H. Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Plant Produced Microb. Vaccines 33–54. (2009).
-
Koop, H. U., Herz, S., Golds, T. J. & Nickelsen, J. The genetic transformation of plastids. Cell Mol. Biol. Plastids 457–510. (2007).
-
Maliga, P. Engineering the plastid genome of higher plants. Curr. Opin. Plant. Biol. 5 (2), 164–172 (2002).
-
Oey, M., Lohse, M., Kreikemeyer, B. & Bock, R. Exhaustion of the Chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 57 (3), 436–445 (2009).
-
Oey, M., Lohse, M., Scharff, L. B., Kreikemeyer, B. & Bock, R. Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc. Natl. Acad. Sci. 106 (16), 6579–6584. (2009).
-
Daniell, H., Streatfield, S. J. & Wycoff, K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6 (5), 219–226 (2001).
-
Fischer, R., Stoger, E., Schillberg, S., Christou, P. & Twyman, R. M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant. Biol. 7 (2), 152–158 (2004).
-
Ma, J. K. C. et al. Molecular farming for new drugs and vaccines: current perspectives on the production of pharmaceuticals in Transgenic plants. EMBO Rep. 6 (7), 593–599 (2005).
-
Ehsasatvatan, M., Kohnehrouz, B. B., Gholizadeh, A., Ofoghi, H. & Shanehbandi, D. The production of the first functional antibody mimetic in higher plants: the Chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biol. Res. 55 (1), 1–18 (2022b).
-
Zoubenko, O. V., Allison, L. A., Svab, Z. & Maliga, P. Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res. 22 (19), 3819–3824 (1994).
-
Ehsasatvatan, M., Kohnehrouz, B. B., Gholizadeh, A., Ofoghi, H. & Shanehbandi, D. Physical and biologically effective parameters in developing transplastomic tobacco plants by particle bombardment method using PDS-1000/He. Optimization 10 (2). (2022).
-
Murray, M. & Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8 (19), 4321–4326 (1980).
-
Kamijima, T. et al. Heat-treatment method for producing fatty acid-bound alpha-lactalbumin that induces tumor cell death. Biochem. Biophys. Res. Commun. 376 (1), 211–214 (2008).
-
Žilinskas, J. et al. HAMLET effect on cell death and mitochondrial respiration in colorectal cancer cell lines with KRAS/BRAF mutations. J. Cancer Res. Clin. Oncol. 149 (11), 8619–8630 (2023).
-
Miller, E. Apoptosis measurement by Annexin V staining. Cancer Cell. Culture Methods Protoc. 191–202. (2004).
-
Jensen, R. G. Activation of Rubisco regulates photosynthesis at high temperature and CO2. Proc. Natl. Acad. Sci. 97 (24), 12937–12938. (2000).
-
Krishnan, H. B. & Natarajan, S. S. A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry 70 (17–18), 1958–1964 (2009).
-
Ramboarina, S. & Redfield, C. Structural characterisation of the human alpha-lactalbumin molten globule at high temperature. J. Mol. Biol. 330 (5), 1177–1188. https://doi.org/10.1016/s0022-2836(03)00639-9 (2003).
-
Piazenski, I. N. et al. From lab to table: the path of recombinant milk proteins in transforming dairy production. Trends Food Sci. Technol. 104562. (2024).
-
Batt, C. A., Rabson, L. D., Wong, D. W. & Kinsella, J. E. Expression of Recombinant bovine β-lactoglobulin in Escherichia coli. Agric. Biol. Chem. 54 (4), 949–955 (1990).
-
Goda, S. et al. Recombinant expression analysis of natural and synthetic bovine alpha-casein in Escherichia coli. Appl. Microbiol. Biotechnol. 54, 671–676 (2000).
-
Kim, Y. et al. High-level expression of human α s1-casein in Escherichia coli. Biotechnol. Tech. 11, 675–678 (1997).
-
Kalidas, C., Joshi, L. & Batt, C. Characterization of glycosylated variants of β-lactoglobulin expressed in Pichia pastoris. Protein Eng. 14 (3), 201–207 (2001).
-
Kim, Y. K., Yu, D. Y., Kang, H. A., Yoon, S. & Chung, B. H. Secretory expression of human $alpha_ {s1} $-Casein in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 9 (2), 196–200 (1999).
-
Totsuka, M. et al. Expression and secretion of bovine β-lactoglobulin in Saccharomyces cerevisiae. Agric. Biol. Chem. 54 (12), 3111–3116 (1990).
-
Sun, X. L., Baker, H. M., Shewry, S. C., Jameson, G. B. & Baker, E. N. Structure of Recombinant human lactoferrin expressed in Aspergillus Awamori. Acta Crystallogr., Sect D: Biol. Crystallogr. 55 (2), 403–407 (1999).
-
Chong, D. et al. Expression of the human milk protein β-casein in Transgenic potato plants. Transgenic Res. 6, 289–296 (1997).
-
Huang, N., Rodriguez, R. L. & Hagie, F. E. Expression of human milk proteins in transgenic plants. Google Patents (2014).
-
Lanquar, V. & Magi, E. R. Recombinant milk proteins and food compositions comprising the same. Google Patents (2022).
-
Tobin, C. J. Recombinant micelle and method of in vivo assembly. Google Patents (2022).
-
Ehsasatvatan, M. & Kohnehrouz, B. B. The lyophilized chloroplasts store synthetic DARPin G3 as bioactive encapsulated organelles. J. Biol. Eng. 17 (1), 63 (2023).
-
Scotti, N., Bellucci, M. & Cardi, T. The chloroplasts as platform for Recombinant proteins production. In Translation in Mitochondria and Other Organelles 225–262. (Springer, 2013).
-
Boyhan, D. & Daniell, H. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C‐peptide. Plant Biotechnol. J. 9 (5), 585–598 (2011).
-
Hakansson, A., Zhivotovsky, B., Orrenius, S., Sabharwal, H. & Svanborg, C. Apoptosis induced by a human milk protein. Proc. Natl. Acad. Sci. 92 (17), 8064–8068 (1995).
-
Ho Cs, J., Rydstrom, A., Manimekalai, M. S. S., Svanborg, C. & Grüber, G. Low resolution solution structure of HAMLET and the importance of its alpha-domains in tumoricidal activity. PloS ONE 7 (12), e53051. (2012).
-
Svensson, M. et al. Molecular characterization of α–lactalbumin folding variants that induce apoptosis in tumor cells. J. Biol. Chem. 274 (10), 6388–6396 (1999).
