Ultrasound assisted extraction enhances phytochemical profile and functional properties of moringa leaf extract with protection against gentamicin induced nephrotoxicity

ultrasound-assisted-extraction-enhances-phytochemical-profile-and-functional-properties-of-moringa-leaf-extract-with-protection-against-gentamicin-induced-nephrotoxicity
Ultrasound assisted extraction enhances phytochemical profile and functional properties of moringa leaf extract with protection against gentamicin induced nephrotoxicity

References

  1. Pareek, A. et al. Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int. J. Mol. Sci. 24(3), 2098. https://doi.org/10.3390/ijms24032098 (2023).

    Google Scholar 

  2. Villegas-Vazquez, E. Y. et al. Unveiling the miracle tree: Therapeutic potential of Moringa oleifera in chronic disease management and beyond. Biomedicines 13(3), 634. https://doi.org/10.3390/biomedicines13030634 (2025).

    Google Scholar 

  3. Louisa, M., Patintingan, C. H. & Wardhani, B. W. Moringa Oleifera Lam. in cardiometabolic disorders: a systematic review of recent studies and possible mechanism of actions. Front. Pharmacol. 13, 792794. https://doi.org/10.3389/fphar.2022.792794 (2022).

    Google Scholar 

  4. Gupta, K. et al. A comprehensive insight into the ethnopharmacology, phytochemistry and therapeutic profile of Moringa oleifera Lam. Phytochem. Rev. https://doi.org/10.1007/s11101-024-10051-z (2024).

    Google Scholar 

  5. Arshad, M. T., Maqsood, S., Ikram, A. & Gnedeka, K. T. Recent perspectives on the pharmacological, nutraceutical, functional, and therapeutic properties of Moringa oleifera plant. Food Sci. Nutr. 13(4), e70134. https://doi.org/10.1002/fsn3.70134 (2025).

    Google Scholar 

  6. Arora, S. & Arora, S. Nutritional significance and therapeutic potential of Moringa oleifera: The wonder plant. J. Food Biochem. 45(10), e13933. https://doi.org/10.1111/jfbc.13933 (2021).

    Google Scholar 

  7. Gamaan, M., Zaky, H. & Ahmed, H. Gentamicin-induced nephrotoxicity: A mechanistic approach. Azhar Int. J. Pharmaceut. Med. Sci. 3(2), 11–19. https://doi.org/10.1608/aijpms.2023.161755.1167 (2023).

    Google Scholar 

  8. Kang, S. et al. Oxymatrine alleviates gentamicin-induced renal injury in rats. Molecules 27(19), 6209. https://doi.org/10.3390/molecules27196209 (2022).

    Google Scholar 

  9. Abouzed, T. et al. Assessment of gentamicin and cisplatin-induced kidney damage mediated via necrotic and apoptosis genes in albino rats. BMC Vet. Res. 17, 1–9. https://doi.org/10.1186/s12917-021-03023-4 (2021).

    Google Scholar 

  10. Hassan, S., Rakha, G., Mousa, S. & Korany, R. Evaluation of gentamicin induced nephrotoxicity in canine: clinical, hematological, biochemical, ultrasonographic and histopathological findings. Explor. Animal Med. Res. https://doi.org/10.52635/eamr/12.1.33-45 (2022).

    Google Scholar 

  11. Karunarathna, I. et al. Clinical applications of gentamicin in treating gram-negative infections. https://doi.org/10.13140/RG.2.2.15991.43680 (2024)

  12. González-Romero, J., Guerra-Hernández, E., Rodríguez-Pérez, C. Bioactive compounds from Moringa oleifera as promising protectors of in vivo inflammation and oxidative stress processes. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress (pp. 379–399). Academic Press. https://doi.org/10.1016/B978-0-12-823482-2.00011-X (2022)

  13. Abo-Elmaaty, A., Al-Shahat, D., Mohamed, S. & Kamel, M. Prevention of hepato-renal toxicity with Moringa oleifera in gentamicin-treated rats. J. Adv. Veterin. Res. 13(7), 1338–1346 (2023).

    Google Scholar 

  14. Divya, S. et al. Exploring the phytochemical, pharmacological and nutritional properties of Moringa oleifera: A comprehensive review. Nutrients 16(19), 3423. https://doi.org/10.3390/nu16193423 (2024).

    Google Scholar 

  15. Mehwish, H. et al. Moringa oleifera–A functional food and its potential immunomodulatory effects. Food Rev. Intl. 38(7), 1533–1552. https://doi.org/10.1080/87559129.2020.1825479 (2022).

    Google Scholar 

  16. Chaudhary, P. et al. A pharmacognosy, ethnobotany and phyto-pharmacology of Moringa oleifera lam. Int. J. Pharm Tech Res. 15(1), 73–82. https://doi.org/10.20902/IJPTR.2022.150207 (2022).

    Google Scholar 

  17. Brand-Williams, W., Cuvelier, M. & Berset, W. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 (1995).

    Google Scholar 

  18. Musa, K., Abdullah, A., Jusoh, K. & Subramaniam, V. Antioxidant activity of pink-flesh guava (Psidium guajava L.): Effect of extraction techniques and solvents. Food Anal. Methods 4, 100–107. https://doi.org/10.1007/s12161-010-9139-3 (2011).

    Google Scholar 

  19. Abu Bakar, M. F., Mohamed, M., Rahmat, A. & Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan mangifera pajang and tarap Artocarpus odoratissimus. Food Chem. 113, 479–483. https://doi.org/10.1016/j.foodchem.2008.07.081 (2009).

    Google Scholar 

  20. Khalid, M., Hussain, M. & Zahoor, M. FTIR and GC-MS profiling of Moringa extracts: Insight into therapeutic potentials. Heliyon 9(1), e12555. https://doi.org/10.1016/j.heliyon.2023.e12555 (2023).

    Google Scholar 

  21. Adams, R.P. Identification of essential oil components by gas chromatography/mass spectrometry. 5 online ed. Gruver, TX: Terenzis Publishing, pp 46–52; http://essentialoilcomponentsbygcms.com (2007)

  22. Attah, I., Agunwamba, J., Etim, R. & Ogarekpe, N. Modelling and predicting of CBR values of lateritic soil treated with metakaolin for road (2019)material. ARPN J. Eng. Appl. Sci 14(20), 3609–3618. https://doi.org/10.1016/j.trgeo (2019).

    Google Scholar 

  23. Khatun, S. Effect of Moringa oleifera leaf extract on histopathology of heart tissues on silk dye waste effluent induced swiss albino male mice mus musculus. Int. J. Curr. Microbiol. App. Sci 7(2), 2094–2100. https://doi.org/10.20546/ijcmas.2018.702.24 (2018).

    Google Scholar 

  24. Wijayanti, H. et al. Protective effect of Moringa oleifera leaves extract against gentamicin induced hepatic and nephrotoxicity in rats. Iraqi J Vet Sci 37(1), 129–135 (2023).

    Google Scholar 

  25. Chaney, A. & Marbach, E. Modified reagents for determination of urea and ammonia. Clin Chem 8, 130–132. https://doi.org/10.1093/clinchem/8.2.130 (1962).

    Google Scholar 

  26. Vasiliades, J. Reaction of alkaline sodium picrate with creatinine: I Kinetics and mechanism of formation of the mono-creatinine picric acid complex. Clin. Chem. 22(10), 1664–1671. https://doi.org/10.1093/clinchem/22.10.1664 (1976).

    Google Scholar 

  27. Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3 (1979).

    Google Scholar 

  28. Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B 851(1–2), 51–70. https://doi.org/10.1016/j.jchromb.2006.07.054 (2007).

    Google Scholar 

  29. Nishikimi, M., Rao, N. & Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 46, 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3 (1972).

    Google Scholar 

  30. Reitman, S. & Frankel, S. Colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28(1), 56–63. https://doi.org/10.1093/ajcp/28.1.56 (1957).

    Google Scholar 

  31. Ellis, G., Belfield, A. & Goldberg, D. Colorimetric determination of serum acid phosphatase activity using adenosine 3′-monophosphate as substrate. J Clin Pathol. 24, 493–500. https://doi.org/10.1136/jcp.24.6.493 (1971).

    Google Scholar 

  32. Spencer, L., Bancroft, J., Bancroft, J., Gamble, M. Tissue processing@ Ban-croft’s theory and practice of histological techniques, 7nd edn. Amsterdam: Elsevier Health Sciences. pp. 105–23 (2012)

  33. Bancroft, J., Cook, H., Stirling, R. Manual of histological techniques and their diagnostic application. In: Manual of histological techniques and their diagnostic application. pp 457–457. https://doi.org/10.5555/19852258307 (1994)

  34. Horwitz, W., Ed. Official Methods of Analysis of the Association of Official Analytical Chemists. In AOAC 18th Ed. 2005. Current through Revision 3, Gaithersburg (2010).

  35. AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists. 20th Edition, AOAC Inc., Washington DC (2016)

  36. Faller, A. & Fialho, E. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Compos. Anal. 23(6), 561–568. https://doi.org/10.1016/j.jfca.2010.01.003 (2010).

    Google Scholar 

  37. Nagata, M. & Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 39(10), 925–928. https://doi.org/10.3136/nskkk1962.39.925 (1992).

    Google Scholar 

  38. Francis F (1983) Colorimetry of foods. In: Physical properties of foods. AVI Publishing, Westport, CT, pp. 105–123. https://doi.org/10.4236/fns.2017.85037

  39. Shih, M., Kuo, C. & Chiang, W. Effects of drying and extrusion on color, chemical composition, antioxidant activities and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 117, 114–121. https://doi.org/10.1016/j.foodchem.2009.03.084 (2009).

    Google Scholar 

  40. Abdelmegiud, M., El-Soukkary, F., EL-Naggar, E. & Abdelsalam, R. Evaluation of some gluten-free biscuits formulations comparison to wheat flour biscuits. Egypt. J. Food Sci. 52(2), 231–242. https://doi.org/10.21608/ejfs.2024.317850.1193 (2024).

    Google Scholar 

  41. Abu Baka, M., Mohamed, M., Rahmat, A. & Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan mangifera pajang and tarap Artocarpus odoratissimus. Food Chem. 113, 479–483. https://doi.org/10.1016/j.foodchem.2008.07.081 (2009).

    Google Scholar 

  42. APHA. Compendium of Methods for the Microbiological Examination of Foods, 3rd Edition, American Public Health Association, Washington DC (1992)

  43. Hashemi, J., Haridy, L. & Qashqari, R. The effect of Moringa oleifera leaves extract on extending the shelf life and quality of freshly sweet Orange Juice. J. Biochem. Technol. 9(4), 63 (2018).

    Google Scholar 

  44. Deepali, D. et al. Unveiling Moringa oleifera: potent source of antioxidant and antibacterial properties. Discov Appl Sci 7, 381. https://doi.org/10.1007/s42452-025-06836-2 (2025).

    Google Scholar 

  45. Thangaiah, A. et al. Optimization of ultrasound-assisted phytomolecules extraction from moringa leaves (Moringa oleifera Lam) using response surface methodology. Cogent Food Agric. https://doi.org/10.1080/23311932.2024.2309834 (2024).

    Google Scholar 

  46. Al-Baidhani, A. et al. Ultrasound-assisted extraction of bioactive compounds from Moringa oleifera leaves for beef patties preservation: antioxidant and inhibitory activities, half-life, and sensory attributes. Food Sci. Nutr. 12(10), 7737–7750. https://doi.org/10.1002/fsn3.4395 (2024).

    Google Scholar 

  47. Lin, X. et al. Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. Leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. J. Appl. Res. Med. Aromat. Plants 20, 100284. https://doi.org/10.1016/j.jarmap.2020.100284 (2021).

    Google Scholar 

  48. Seghir, A. et al. Comprehensive chemical profiling of Moringa oleifera leaves extracts by LC–MS/MS followed by in silico ADMET prediction using swiss ADME. Biomed. Chromatogr. 39(6), e70110. https://doi.org/10.1002/bmc.70110 (2025).

    Google Scholar 

  49. Bhalla, N. et al. Phytochemical analysis of Moringa oleifera leaves extracts by GC-MS and free radical scavenging potency for industrial applications. Saudi J. Biol. Sci. 28(12), 6915–6928. https://doi.org/10.1016/j.sjbs.2021.07.075 (2021).

    Google Scholar 

  50. Lukiswanto, B. et al. Protective effect of Moringa oleifera leaves extract against gentamicin induced hepatic and nephrotoxicity in rats. Iraqi J. Veterin. Sci. 37(1), 129–135. https://doi.org/10.33899/ijvs.2022.133276.2197 (2023).

    Google Scholar 

  51. Tranquilino-Rodríguez, E. & Martínez-Flores, H. Ultrasound-assisted extraction of phenolic compounds from Moringa oleifera leaves by response surface methodology. Bioact. Compounds Health Disease 6(11), 325–337. https://doi.org/10.31989/bchd.v6i11.1229 (2023).

    Google Scholar 

  52. Drăgoi, C., Diaconu, C., Nicolae, A. & Dumitrescu, I. Redox homeostasis and molecular biomarkers in precision therapy for cardiovascular diseases. Antioxidants 13(10), 1163. https://doi.org/10.3390/antiox13101163 (2024).

    Google Scholar 

  53. Chandimali, N. et al. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 11(1), 19. https://doi.org/10.1038/s41420-024-02278-8 (2025).

    Google Scholar 

  54. Balan, V. et al. Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials 12(18), 2884. https://doi.org/10.3390/ma12182884 (2019).

    Google Scholar 

  55. Wang, Z. et al. Extraction of phenolic compounds from Moringa oleifera Lam. leaves with ultrasonic-assisted deep eutectic solvents. Front. Nutr. 11, 1405128. https://doi.org/10.3389/fnut.2024.1405128 (2024).

    Google Scholar 

  56. Rialdi, A., Prangdimurti, E. & Saraswati, S. Effect of different solvent on the Antioxidant capacity of bidara leaves extract (Ziziphus Spina-Christi). J. Res. Commun. Serv. 4(6), 1222–1233. https://doi.org/10.59188/devotion.v4i6.483 (2023).

    Google Scholar 

  57. Mokaizh, A., Nour, A. & Kerboua, K. Ultrasonic-assisted extraction to enhance the recovery of bioactive phenolic compounds from Commiphora gileadensis leaves. Ultrason. Sonochem. 105, 106852. https://doi.org/10.1016/j.ultsonch.2024.106852 (2024).

    Google Scholar 

  58. Liu, J. et al. Three-step identification of infrared spectra of similar tree species to Pterocarpus santalinus covered with beeswax. J. Mol. Struct. 1218, 128484. https://doi.org/10.1016/j.molstruc.2020.128484 (2020).

    Google Scholar 

  59. Silva, S. S. & Wansapala, J. GC-MS analysis and phytochemical profiling of Moringa oleifera leaves grown in Sri Lanka. J. Pharmacogn. Phytochem. 5(3), 224–229 (2016).

    Google Scholar 

  60. Rahamouz-Haghighi, S. et al. Phytochemical screening and Cytotoxicity assessment of Plantago lanceolata L. root extracts on Colorectal cancer cell lines and Brine shrimp larvae and determination of the median lethal dose in mice. S. Afr. J. Bot. 149, 740–747. https://doi.org/10.1016/j.sajb.2022.06.058 (2022).

    Google Scholar 

  61. Sadeghi, M. et al. α-glucosidase inhibitory, antioxidant activity, and GC/MS analysis of Descurainia sophia methanolic extract: In vitro, in vivo, and in silico studies. Arab. J. Chem. 15(9), 104055. https://doi.org/10.1016/j.arabjc.2022.104055 (2022).

    Google Scholar 

  62. Zhang, J., Feng, F. & Zhao, M. Glycerol monocaprylate modulates gut microbiota and increases short-chain fatty acids production without adverse effects on metabolism and inflammation. Nutrients 13(5), 1427. https://doi.org/10.3390/nu13051427 (2021).

    Google Scholar 

  63. Guo, X. et al. The role of palmitoleic acid in regulating hepatic gluconeogenesis through SIRT3 in obese mice. Nutrients 14(7), 1482. https://doi.org/10.3390/nu14071482 (2022).

    Google Scholar 

  64. Hayward, G. et al. d-Mannose for prevention of recurrent urinary tract infection among women: A randomized clinical trial. JAMA Intern. Med. 184(6), 619–628 (2024).

    Google Scholar 

  65. Islam, R. & Alam, M. Evaluation of liver protective activity of Moringa oleifera bark extract in paracetamol induced hepatotoxicity in rats. BioRxiv https://doi.org/10.1101/513002 (2019).

    Google Scholar 

  66. Sidorkiewicz, M. The cardioprotective effects of polyunsaturated fatty acids depends on the balance between their anti-and pro-oxidative properties. Nutrients 16(22), 3937. https://doi.org/10.3390/nu16223937 (2024).

    Google Scholar 

  67. Zhang, M. et al. Isolation, structures and biological activities of medicinal glycoproteins from natural resources: A review. Int. J. Biol. Macromol. 244, 125406. https://doi.org/10.1016/j.ijbiomac.2023.125406 (2023).

    Google Scholar 

  68. Venn-Watson, S. & Schork, N. Pentadecanoic acid (C15: 0), an essential fatty acid, shares clinically relevant cell-based activities with leading longevity-enhancing compounds. Nutrients 15(21), 4607. https://doi.org/10.3390/nu15214607 (2023).

    Google Scholar 

  69. Shimomura, H. et al. A short review: the biological activity of vitamin D and its decomposition products. Mol. Biol. Rep. 52(1), 1–10. https://doi.org/10.1007/s11033-025-10322-8 (2025).

    Google Scholar 

  70. Xu, Y. et al. Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules 26(23), 7115. https://doi.org/10.3390/molecules26237115 (2021).

    Google Scholar 

  71. Bourais, I. et al. A review on medicinal uses, nutritional value, and antimicrobial, antioxidant, anti-inflammatory, antidiabetic, and anticancer potential related to bioactive compounds of J. regia. Food Rev. Intl. 39(9), 6199–6249. https://doi.org/10.1080/87559129.2022.2094401 (2023).

    Google Scholar 

  72. Olvera-Aguirre, G. et al. Effect of extraction type on bioactive compounds and antioxidant activity of Moringa oleifera Lam leaves. Agriculture 12(9), 1462. https://doi.org/10.3390/agriculture12091462 (2022).

    Google Scholar 

  73. Nguyen, T., Hoang, B., Huynh, X. & Bach, L. Research on the extraction conditions of naringin, antioxidant, antibacterial properties from duong la cam pomelo peel. Vietnam Nat. Product Commun. 19(12), 1934578X241305287. https://doi.org/10.1177/1934578X241305287 (2024).

    Google Scholar 

  74. Sukmawaty, E. et al. Effect of geographical and agroclimatic location on phytocompounds and antioxidant activity of moringa oleifera leaves. J. Adv. Biotechnol. Exp. Ther 7, 556. https://doi.org/10.5455/jabet.2024.d48 (2024).

    Google Scholar 

  75. Herman-Lara, E. et al. In vitro antioxidant, anti-Inflammatory activity and bio accessibility of ethanolic extracts from Mexican Moringa oleifera leaf. Foods 13(17), 2709. https://doi.org/10.3390/foods13172709 (2024).

    Google Scholar 

  76. Wu, L. et al. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves:Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 247, 117014. https://doi.org/10.33899/ijvs.2022.133276.2197 (2020).

    Google Scholar 

  77. Ahmed, A. & Sohail, M. Characterization of pectinase from Geotrichum candidum AA15 and its potential application in orange juice clarification. J. King Saud Univ.-Sci. 32(1), 955–961. https://doi.org/10.1016/j.jksus.2019.07.002 (2020).

    Google Scholar 

  78. Richa, R. Citrus fruit: Classification, value addition, nutritional and medicinal values, and relation with pandemic and hidden hunger. J. Agric. Food Res. 14, 100718. https://doi.org/10.1016/j.jafr.2023.100718 (2023).

    Google Scholar 

  79. Dadi, D. et al. Effects of spray drying process parameters on the physical properties and digestibility of the microencapsulated product from Moringa stenopetala leaves extract. Cogent Food Agric. 5(1), 1690316. https://doi.org/10.1080/23311932.2019.1690316 (2019).

    Google Scholar 

  80. Abdallah, R. et al. Antimicrobial effect of Moringa oleifera leaves extract on foodborne pathogens in ground beef. Foods 12(4), 766. https://doi.org/10.3390/foods12040766 (2023).

    Google Scholar 

  81. Abdelsalam, R. et al. Functional properties and acceptability of ice soy milk fortified with papaya or kiwi. J. Food Dairy Sci. 11(6), 157–164. https://doi.org/10.21608/jfds.2020.106368 (2020).

    Google Scholar 

  82. Trigo, C., Castelló, M. & Ortolá, M. Potentiality of Moringa oleifera as a nutritive ingredient in different food matrices. Plant Foods Hum. Nutr. 78(1), 25–37 (2023).

    Google Scholar 

Download references