References
-
Pareek, A. et al. Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int. J. Mol. Sci. 24(3), 2098. https://doi.org/10.3390/ijms24032098 (2023).
-
Villegas-Vazquez, E. Y. et al. Unveiling the miracle tree: Therapeutic potential of Moringa oleifera in chronic disease management and beyond. Biomedicines 13(3), 634. https://doi.org/10.3390/biomedicines13030634 (2025).
-
Louisa, M., Patintingan, C. H. & Wardhani, B. W. Moringa Oleifera Lam. in cardiometabolic disorders: a systematic review of recent studies and possible mechanism of actions. Front. Pharmacol. 13, 792794. https://doi.org/10.3389/fphar.2022.792794 (2022).
-
Gupta, K. et al. A comprehensive insight into the ethnopharmacology, phytochemistry and therapeutic profile of Moringa oleifera Lam. Phytochem. Rev. https://doi.org/10.1007/s11101-024-10051-z (2024).
-
Arshad, M. T., Maqsood, S., Ikram, A. & Gnedeka, K. T. Recent perspectives on the pharmacological, nutraceutical, functional, and therapeutic properties of Moringa oleifera plant. Food Sci. Nutr. 13(4), e70134. https://doi.org/10.1002/fsn3.70134 (2025).
-
Arora, S. & Arora, S. Nutritional significance and therapeutic potential of Moringa oleifera: The wonder plant. J. Food Biochem. 45(10), e13933. https://doi.org/10.1111/jfbc.13933 (2021).
-
Gamaan, M., Zaky, H. & Ahmed, H. Gentamicin-induced nephrotoxicity: A mechanistic approach. Azhar Int. J. Pharmaceut. Med. Sci. 3(2), 11–19. https://doi.org/10.1608/aijpms.2023.161755.1167 (2023).
-
Kang, S. et al. Oxymatrine alleviates gentamicin-induced renal injury in rats. Molecules 27(19), 6209. https://doi.org/10.3390/molecules27196209 (2022).
-
Abouzed, T. et al. Assessment of gentamicin and cisplatin-induced kidney damage mediated via necrotic and apoptosis genes in albino rats. BMC Vet. Res. 17, 1–9. https://doi.org/10.1186/s12917-021-03023-4 (2021).
-
Hassan, S., Rakha, G., Mousa, S. & Korany, R. Evaluation of gentamicin induced nephrotoxicity in canine: clinical, hematological, biochemical, ultrasonographic and histopathological findings. Explor. Animal Med. Res. https://doi.org/10.52635/eamr/12.1.33-45 (2022).
-
Karunarathna, I. et al. Clinical applications of gentamicin in treating gram-negative infections. https://doi.org/10.13140/RG.2.2.15991.43680 (2024)
-
González-Romero, J., Guerra-Hernández, E., Rodríguez-Pérez, C. Bioactive compounds from Moringa oleifera as promising protectors of in vivo inflammation and oxidative stress processes. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress (pp. 379–399). Academic Press. https://doi.org/10.1016/B978-0-12-823482-2.00011-X (2022)
-
Abo-Elmaaty, A., Al-Shahat, D., Mohamed, S. & Kamel, M. Prevention of hepato-renal toxicity with Moringa oleifera in gentamicin-treated rats. J. Adv. Veterin. Res. 13(7), 1338–1346 (2023).
-
Divya, S. et al. Exploring the phytochemical, pharmacological and nutritional properties of Moringa oleifera: A comprehensive review. Nutrients 16(19), 3423. https://doi.org/10.3390/nu16193423 (2024).
-
Mehwish, H. et al. Moringa oleifera–A functional food and its potential immunomodulatory effects. Food Rev. Intl. 38(7), 1533–1552. https://doi.org/10.1080/87559129.2020.1825479 (2022).
-
Chaudhary, P. et al. A pharmacognosy, ethnobotany and phyto-pharmacology of Moringa oleifera lam. Int. J. Pharm Tech Res. 15(1), 73–82. https://doi.org/10.20902/IJPTR.2022.150207 (2022).
-
Brand-Williams, W., Cuvelier, M. & Berset, W. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 (1995).
-
Musa, K., Abdullah, A., Jusoh, K. & Subramaniam, V. Antioxidant activity of pink-flesh guava (Psidium guajava L.): Effect of extraction techniques and solvents. Food Anal. Methods 4, 100–107. https://doi.org/10.1007/s12161-010-9139-3 (2011).
-
Abu Bakar, M. F., Mohamed, M., Rahmat, A. & Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan mangifera pajang and tarap Artocarpus odoratissimus. Food Chem. 113, 479–483. https://doi.org/10.1016/j.foodchem.2008.07.081 (2009).
-
Khalid, M., Hussain, M. & Zahoor, M. FTIR and GC-MS profiling of Moringa extracts: Insight into therapeutic potentials. Heliyon 9(1), e12555. https://doi.org/10.1016/j.heliyon.2023.e12555 (2023).
-
Adams, R.P. Identification of essential oil components by gas chromatography/mass spectrometry. 5 online ed. Gruver, TX: Terenzis Publishing, pp 46–52; http://essentialoilcomponentsbygcms.com (2007)
-
Attah, I., Agunwamba, J., Etim, R. & Ogarekpe, N. Modelling and predicting of CBR values of lateritic soil treated with metakaolin for road (2019)material. ARPN J. Eng. Appl. Sci 14(20), 3609–3618. https://doi.org/10.1016/j.trgeo (2019).
-
Khatun, S. Effect of Moringa oleifera leaf extract on histopathology of heart tissues on silk dye waste effluent induced swiss albino male mice mus musculus. Int. J. Curr. Microbiol. App. Sci 7(2), 2094–2100. https://doi.org/10.20546/ijcmas.2018.702.24 (2018).
-
Wijayanti, H. et al. Protective effect of Moringa oleifera leaves extract against gentamicin induced hepatic and nephrotoxicity in rats. Iraqi J Vet Sci 37(1), 129–135 (2023).
-
Chaney, A. & Marbach, E. Modified reagents for determination of urea and ammonia. Clin Chem 8, 130–132. https://doi.org/10.1093/clinchem/8.2.130 (1962).
-
Vasiliades, J. Reaction of alkaline sodium picrate with creatinine: I Kinetics and mechanism of formation of the mono-creatinine picric acid complex. Clin. Chem. 22(10), 1664–1671. https://doi.org/10.1093/clinchem/22.10.1664 (1976).
-
Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3 (1979).
-
Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B 851(1–2), 51–70. https://doi.org/10.1016/j.jchromb.2006.07.054 (2007).
-
Nishikimi, M., Rao, N. & Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 46, 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3 (1972).
-
Reitman, S. & Frankel, S. Colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 28(1), 56–63. https://doi.org/10.1093/ajcp/28.1.56 (1957).
-
Ellis, G., Belfield, A. & Goldberg, D. Colorimetric determination of serum acid phosphatase activity using adenosine 3′-monophosphate as substrate. J Clin Pathol. 24, 493–500. https://doi.org/10.1136/jcp.24.6.493 (1971).
-
Spencer, L., Bancroft, J., Bancroft, J., Gamble, M. Tissue processing@ Ban-croft’s theory and practice of histological techniques, 7nd edn. Amsterdam: Elsevier Health Sciences. pp. 105–23 (2012)
-
Bancroft, J., Cook, H., Stirling, R. Manual of histological techniques and their diagnostic application. In: Manual of histological techniques and their diagnostic application. pp 457–457. https://doi.org/10.5555/19852258307 (1994)
-
Horwitz, W., Ed. Official Methods of Analysis of the Association of Official Analytical Chemists. In AOAC 18th Ed. 2005. Current through Revision 3, Gaithersburg (2010).
-
AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists. 20th Edition, AOAC Inc., Washington DC (2016)
-
Faller, A. & Fialho, E. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Compos. Anal. 23(6), 561–568. https://doi.org/10.1016/j.jfca.2010.01.003 (2010).
-
Nagata, M. & Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 39(10), 925–928. https://doi.org/10.3136/nskkk1962.39.925 (1992).
-
Francis F (1983) Colorimetry of foods. In: Physical properties of foods. AVI Publishing, Westport, CT, pp. 105–123. https://doi.org/10.4236/fns.2017.85037
-
Shih, M., Kuo, C. & Chiang, W. Effects of drying and extrusion on color, chemical composition, antioxidant activities and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 117, 114–121. https://doi.org/10.1016/j.foodchem.2009.03.084 (2009).
-
Abdelmegiud, M., El-Soukkary, F., EL-Naggar, E. & Abdelsalam, R. Evaluation of some gluten-free biscuits formulations comparison to wheat flour biscuits. Egypt. J. Food Sci. 52(2), 231–242. https://doi.org/10.21608/ejfs.2024.317850.1193 (2024).
-
Abu Baka, M., Mohamed, M., Rahmat, A. & Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan mangifera pajang and tarap Artocarpus odoratissimus. Food Chem. 113, 479–483. https://doi.org/10.1016/j.foodchem.2008.07.081 (2009).
-
APHA. Compendium of Methods for the Microbiological Examination of Foods, 3rd Edition, American Public Health Association, Washington DC (1992)
-
Hashemi, J., Haridy, L. & Qashqari, R. The effect of Moringa oleifera leaves extract on extending the shelf life and quality of freshly sweet Orange Juice. J. Biochem. Technol. 9(4), 63 (2018).
-
Deepali, D. et al. Unveiling Moringa oleifera: potent source of antioxidant and antibacterial properties. Discov Appl Sci 7, 381. https://doi.org/10.1007/s42452-025-06836-2 (2025).
-
Thangaiah, A. et al. Optimization of ultrasound-assisted phytomolecules extraction from moringa leaves (Moringa oleifera Lam) using response surface methodology. Cogent Food Agric. https://doi.org/10.1080/23311932.2024.2309834 (2024).
-
Al-Baidhani, A. et al. Ultrasound-assisted extraction of bioactive compounds from Moringa oleifera leaves for beef patties preservation: antioxidant and inhibitory activities, half-life, and sensory attributes. Food Sci. Nutr. 12(10), 7737–7750. https://doi.org/10.1002/fsn3.4395 (2024).
-
Lin, X. et al. Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. Leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. J. Appl. Res. Med. Aromat. Plants 20, 100284. https://doi.org/10.1016/j.jarmap.2020.100284 (2021).
-
Seghir, A. et al. Comprehensive chemical profiling of Moringa oleifera leaves extracts by LC–MS/MS followed by in silico ADMET prediction using swiss ADME. Biomed. Chromatogr. 39(6), e70110. https://doi.org/10.1002/bmc.70110 (2025).
-
Bhalla, N. et al. Phytochemical analysis of Moringa oleifera leaves extracts by GC-MS and free radical scavenging potency for industrial applications. Saudi J. Biol. Sci. 28(12), 6915–6928. https://doi.org/10.1016/j.sjbs.2021.07.075 (2021).
-
Lukiswanto, B. et al. Protective effect of Moringa oleifera leaves extract against gentamicin induced hepatic and nephrotoxicity in rats. Iraqi J. Veterin. Sci. 37(1), 129–135. https://doi.org/10.33899/ijvs.2022.133276.2197 (2023).
-
Tranquilino-Rodríguez, E. & Martínez-Flores, H. Ultrasound-assisted extraction of phenolic compounds from Moringa oleifera leaves by response surface methodology. Bioact. Compounds Health Disease 6(11), 325–337. https://doi.org/10.31989/bchd.v6i11.1229 (2023).
-
Drăgoi, C., Diaconu, C., Nicolae, A. & Dumitrescu, I. Redox homeostasis and molecular biomarkers in precision therapy for cardiovascular diseases. Antioxidants 13(10), 1163. https://doi.org/10.3390/antiox13101163 (2024).
-
Chandimali, N. et al. Free radicals and their impact on health and antioxidant defenses: A review. Cell Death Discov. 11(1), 19. https://doi.org/10.1038/s41420-024-02278-8 (2025).
-
Balan, V. et al. Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials 12(18), 2884. https://doi.org/10.3390/ma12182884 (2019).
-
Wang, Z. et al. Extraction of phenolic compounds from Moringa oleifera Lam. leaves with ultrasonic-assisted deep eutectic solvents. Front. Nutr. 11, 1405128. https://doi.org/10.3389/fnut.2024.1405128 (2024).
-
Rialdi, A., Prangdimurti, E. & Saraswati, S. Effect of different solvent on the Antioxidant capacity of bidara leaves extract (Ziziphus Spina-Christi). J. Res. Commun. Serv. 4(6), 1222–1233. https://doi.org/10.59188/devotion.v4i6.483 (2023).
-
Mokaizh, A., Nour, A. & Kerboua, K. Ultrasonic-assisted extraction to enhance the recovery of bioactive phenolic compounds from Commiphora gileadensis leaves. Ultrason. Sonochem. 105, 106852. https://doi.org/10.1016/j.ultsonch.2024.106852 (2024).
-
Liu, J. et al. Three-step identification of infrared spectra of similar tree species to Pterocarpus santalinus covered with beeswax. J. Mol. Struct. 1218, 128484. https://doi.org/10.1016/j.molstruc.2020.128484 (2020).
-
Silva, S. S. & Wansapala, J. GC-MS analysis and phytochemical profiling of Moringa oleifera leaves grown in Sri Lanka. J. Pharmacogn. Phytochem. 5(3), 224–229 (2016).
-
Rahamouz-Haghighi, S. et al. Phytochemical screening and Cytotoxicity assessment of Plantago lanceolata L. root extracts on Colorectal cancer cell lines and Brine shrimp larvae and determination of the median lethal dose in mice. S. Afr. J. Bot. 149, 740–747. https://doi.org/10.1016/j.sajb.2022.06.058 (2022).
-
Sadeghi, M. et al. α-glucosidase inhibitory, antioxidant activity, and GC/MS analysis of Descurainia sophia methanolic extract: In vitro, in vivo, and in silico studies. Arab. J. Chem. 15(9), 104055. https://doi.org/10.1016/j.arabjc.2022.104055 (2022).
-
Zhang, J., Feng, F. & Zhao, M. Glycerol monocaprylate modulates gut microbiota and increases short-chain fatty acids production without adverse effects on metabolism and inflammation. Nutrients 13(5), 1427. https://doi.org/10.3390/nu13051427 (2021).
-
Guo, X. et al. The role of palmitoleic acid in regulating hepatic gluconeogenesis through SIRT3 in obese mice. Nutrients 14(7), 1482. https://doi.org/10.3390/nu14071482 (2022).
-
Hayward, G. et al. d-Mannose for prevention of recurrent urinary tract infection among women: A randomized clinical trial. JAMA Intern. Med. 184(6), 619–628 (2024).
-
Islam, R. & Alam, M. Evaluation of liver protective activity of Moringa oleifera bark extract in paracetamol induced hepatotoxicity in rats. BioRxiv https://doi.org/10.1101/513002 (2019).
-
Sidorkiewicz, M. The cardioprotective effects of polyunsaturated fatty acids depends on the balance between their anti-and pro-oxidative properties. Nutrients 16(22), 3937. https://doi.org/10.3390/nu16223937 (2024).
-
Zhang, M. et al. Isolation, structures and biological activities of medicinal glycoproteins from natural resources: A review. Int. J. Biol. Macromol. 244, 125406. https://doi.org/10.1016/j.ijbiomac.2023.125406 (2023).
-
Venn-Watson, S. & Schork, N. Pentadecanoic acid (C15: 0), an essential fatty acid, shares clinically relevant cell-based activities with leading longevity-enhancing compounds. Nutrients 15(21), 4607. https://doi.org/10.3390/nu15214607 (2023).
-
Shimomura, H. et al. A short review: the biological activity of vitamin D and its decomposition products. Mol. Biol. Rep. 52(1), 1–10. https://doi.org/10.1007/s11033-025-10322-8 (2025).
-
Xu, Y. et al. Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules 26(23), 7115. https://doi.org/10.3390/molecules26237115 (2021).
-
Bourais, I. et al. A review on medicinal uses, nutritional value, and antimicrobial, antioxidant, anti-inflammatory, antidiabetic, and anticancer potential related to bioactive compounds of J. regia. Food Rev. Intl. 39(9), 6199–6249. https://doi.org/10.1080/87559129.2022.2094401 (2023).
-
Olvera-Aguirre, G. et al. Effect of extraction type on bioactive compounds and antioxidant activity of Moringa oleifera Lam leaves. Agriculture 12(9), 1462. https://doi.org/10.3390/agriculture12091462 (2022).
-
Nguyen, T., Hoang, B., Huynh, X. & Bach, L. Research on the extraction conditions of naringin, antioxidant, antibacterial properties from duong la cam pomelo peel. Vietnam Nat. Product Commun. 19(12), 1934578X241305287. https://doi.org/10.1177/1934578X241305287 (2024).
-
Sukmawaty, E. et al. Effect of geographical and agroclimatic location on phytocompounds and antioxidant activity of moringa oleifera leaves. J. Adv. Biotechnol. Exp. Ther 7, 556. https://doi.org/10.5455/jabet.2024.d48 (2024).
-
Herman-Lara, E. et al. In vitro antioxidant, anti-Inflammatory activity and bio accessibility of ethanolic extracts from Mexican Moringa oleifera leaf. Foods 13(17), 2709. https://doi.org/10.3390/foods13172709 (2024).
-
Wu, L. et al. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves:Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 247, 117014. https://doi.org/10.33899/ijvs.2022.133276.2197 (2020).
-
Ahmed, A. & Sohail, M. Characterization of pectinase from Geotrichum candidum AA15 and its potential application in orange juice clarification. J. King Saud Univ.-Sci. 32(1), 955–961. https://doi.org/10.1016/j.jksus.2019.07.002 (2020).
-
Richa, R. Citrus fruit: Classification, value addition, nutritional and medicinal values, and relation with pandemic and hidden hunger. J. Agric. Food Res. 14, 100718. https://doi.org/10.1016/j.jafr.2023.100718 (2023).
-
Dadi, D. et al. Effects of spray drying process parameters on the physical properties and digestibility of the microencapsulated product from Moringa stenopetala leaves extract. Cogent Food Agric. 5(1), 1690316. https://doi.org/10.1080/23311932.2019.1690316 (2019).
-
Abdallah, R. et al. Antimicrobial effect of Moringa oleifera leaves extract on foodborne pathogens in ground beef. Foods 12(4), 766. https://doi.org/10.3390/foods12040766 (2023).
-
Abdelsalam, R. et al. Functional properties and acceptability of ice soy milk fortified with papaya or kiwi. J. Food Dairy Sci. 11(6), 157–164. https://doi.org/10.21608/jfds.2020.106368 (2020).
-
Trigo, C., Castelló, M. & Ortolá, M. Potentiality of Moringa oleifera as a nutritive ingredient in different food matrices. Plant Foods Hum. Nutr. 78(1), 25–37 (2023).
