References
-
Che, C. T., Wang, Z. J., Chow, M. S. & Lam, C. W. Herb-herb combination for therapeutic enhancement and advancement: theory, practice and future perspectives. Molecules 18, 5125–5141 (2013).
-
Zhou, X. et al. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front. Pharm. 7, 201 (2016).
-
Adamski, Z., Blythe, L. L., Milella, L. & Bufo, S. A. Biological activities of alkaloids: from toxicology to pharmacology. Toxins 12 https://doi.org/10.3390/toxins12040210 (2020).
-
Roy, A. et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Biomed. Res. Int. 2022, 5445291 (2022).
-
Rao, A. V. & Gurfinkel, D. M. The bioactivity of saponins: triterpenoid and steroidal glycosides. Drug Metab. Drug Interact. 17, 211–235 (2000).
-
Honda, H. et al. Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner. J. Leukoc. Biol. 91, 967–976 (2012).
-
Wahab, S. et al. (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 10 https://doi.org/10.3390/plants10122751 (2021).
-
Yang, R., Yuan, B. C., Ma, Y. S., Zhou, S. & Liu, Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm. Biol. 55, 5–18 (2017).
-
Sharifi-Rad, J. et al. Genus: enlightening phytochemical components for pharmacological and health-promoting abilities. Oxid. Med Cell Longev. 2021, 7571132 (2021).
-
Mollica, L. et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem. Biol. 14, 431–441 (2007).
-
Zhai, K. F. et al. Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. J. Agric Food Chem. 67, 2856–2864 (2019).
-
Li, M. et al. Anti-inflammation of isoliquiritigenin via the inhibition of NF-κB and MAPK in LPS-stimulated MAC-T cells. BMC Vet. Res. 18, 320 (2022).
-
Zhao, F. et al. Glycyrrhizin protects rats from sepsis by blocking HMGB1 signaling. Biomed. Res. Int. 2017, 9719647 (2017).
-
Kim, Y. W. et al. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-kappaB-dependent iNOS and proinflammatory cytokines production. Br. J. Pharm. 154, 165–173 (2008).
-
Zhang, Q. H. et al. Traditional uses, pharmacological effects, and molecular mechanisms of licorice in potential therapy of COVID-19. Front. Pharm. 12, 719758 (2021).
-
Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014).
-
Kiuchi, S. et al. Using variable data-independent acquisition for capillary electrophoresis-based untargeted metabolomics. J. Am. Soc. Mass Spectrom. 35, 2118–2127 (2024).
-
Kaneko, A. et al. Glucuronides of phytoestrogen flavonoid enhance macrophage function via conversion to aglycones by beta-glucuronidase in macrophages. Immun. Inflamm. Dis. 5, 265–279 (2017).
-
Rodríguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).
-
Sanchez-Lopez, E. et al. Choline uptake and metabolism modulate macrophage IL-1β and IL-18 production. Cell Metab. 29, 1350–1362.e1357 (2019).
-
Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).
-
Marrocco, A. & Ortiz, L. A. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front. Immunol. 13, 936167 (2022).
-
Palmieri, E. M. et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun. 11, 698 (2020).
-
Funk, J. L., Feingold, K. R., Moser, A. H. & Grunfeld, C. Lipopolysaccharide stimulation of RAW 264.7 macrophages induces lipid accumulation and foam cell formation. Atherosclerosis 98, 67–82 (1993).
-
Huang, Y. L. et al. Toll-like receptor agonists promote prolonged triglyceride storage in macrophages. J. Biol. Chem. 289, 3001–3012 (2014).
-
Castoldi, A. et al. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat. Commun. 11, 4107 (2020).
-
Kim, S. J. et al. AMPK phosphorylates Desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol. Cell Biol. 36, 1961–1976 (2016).
-
Bekker-Jensen, D. B. et al. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat. Commun. 11, 787 (2020).
-
Katsuyuki, Y. & Shinya, K. Metabolism as a signal generator across trans-omic networks at distinct time scales. Curr. Opin. Syst. Biol. 8, 59–66 (2018).
-
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677 (2025).
-
Chen, C. et al. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2’, 4’-Tetrahydroxychalcone. J. Exp. Clin. Cancer Res. 37, 243 (2018).
-
Van Nostrand, J. L. et al. AMPK regulation of Raptor and TSC2 mediate metformin effects on transcriptional control of anabolism and inflammation. Genes Dev. 34, 1330–1344 (2020).
-
Yamamoto, H. Multiset partial least squares with rank order of groups for integrating multi-omics data. Preprint at https://doi.org/10.1101/2022.08.30.505949 (2022).
-
Yamamoto, H. PLS-ROG: partial least squares with rank order of groups. J. Chemometr. 31 https://doi.org/10.1002/cem.2883 (2017).
-
Argelaguet, R. et al. Multi-omics factor analysis-a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14 https://doi.org/10.15252/msb.20178124 (2018).
-
Argelaguet, R. et al. MOFA plus: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21 https://doi.org/10.1186/s13059-020-02015-1 (2020).
-
Lu, W., Ji, H. & Wu, D. SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front. Immunol. 14, 1174180 (2023).
-
Pandithage, R. et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J. Cell Biol. 180, 915–929 (2008).
-
Zhao, X. et al. Sirt1 inhibits macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway. Inflamm. Res. 73, 1173–1184 (2024).
-
Xia, Y. et al. GABA transporter sustains IL-1β production in macrophages. Sci. Adv. 7 https://doi.org/10.1126/sciadv.abe9274 (2021).
-
Kim, J. Y. et al. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kappaB in RAW 264.7 macrophages. Eur. J. Pharm. 584, 175–184 (2008).
-
Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).
-
Yang, H. Y. et al. SIRT1 Activators Suppress Inflammatory Responses through Promotion of p65 Deacetylation and Inhibition of NF-κB Activity. Plos ONE 7 https://doi.org/10.1371/journal.pone.0046364 (2012).
-
Rothgiesser, K. M., Erener, S., Waibel, S., Lüscher, B. & Hottiger, M. O. SIRT2 regulates NF-κB-dependent gene expression through deacetylation of p65 Lys310. J. Cell Sci. 123, 4251–4258 (2010).
-
Tao, Z. J., Jin, Z. H., Wu, J. B., Cai, G. J. & Yu, X. L. Sirtuin family in autoimmune diseases. Front. Immunol. 14 https://doi.org/10.3389/fimmu.2023.1186231 (2023).
-
Ruderman, N. B. et al. AMPK and SIRT1: a long-standing partnership?. Am. J. Physiol. Endocrinol. Metab. 298, E751–E760 (2010).
-
Wang, H. W. et al. Blockade of fatty acid signalling inhibits lipopolysaccharide-induced macrophage recruitment and progression of apical periodontitis. Int. Endod. J. 54, 902–915 (2021).
-
Xiao, Y., Yang, Y., Xiong, H. & Dong, G. The implications of FASN in immune cell biology and related diseases. Cell Death Dis. 15, 88 (2024).
-
Tzou, F. Y., Hornemann, T., Yeh, J. Y. & Huang, S. Y. The pathophysiological role of dihydroceramide desaturase in the nervous system. Prog. Lipid Res. 91, 101236 (2023).
-
Bhandage, A. K. & Barragan, A. GABAergic signaling by cells of the immune system: more the rule than the exception. Cell Mol. Life Sci. 78, 5667–5679 (2021).
-
Jin, Z., Mendu, S. K. & Birnir, B. GABA is an effective immunomodulatory molecule. Amino Acids 45, 87–94 (2013).
-
Tang, D., Orlandi, P., Li, Q., Bandini, A. & Bocci, G. GABAergic signaling in colorectal cancer: mechanistic insights, tumor microenvironment crosstalk, and therapeutic opportunities. Biochim. Biophys. Acta Rev. Cancer 1880, 189414 (2025).
-
Ortega, A. A new role for GABA: inhibition of tumor cell migration. Trends Pharm. Sci. 24, 151–154 (2003).
-
Eid, H. M. A. et al. GABA and GABAergic dysfunction in COVID-19: Piecing the puzzle with targeting immunity and several inflammatory pathways. Cytokine 193 https://doi.org/10.1016/j.cyto.2025.156976 (2025).
-
Zhang, Q. L. et al. Insights and progress on the biosynthesis, metabolism, and physiological functions of gamma-aminobutyric acid (GABA): a review. Peerj 12 https://doi.org/10.7717/peerj.18712 (2024).
-
Schildberger, A., Rossmanith, E., Eichhorn, T., Strassl, K. & Weber, V. Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Mediat. Inflamm. 2013 https://doi.org/10.1155/2013/697972 (2013).
-
Trost, M. et al. The Phagosomal Proteome in Interferon-γ-Activated Macrophages. Immunity 30, 143–154 (2009).
-
Sun, Y., Mehmood, A., Battino, M., Xiao, J. B. & Chen, X. M. Enrichment of gamma-aminobutyric acid in foods: From conventional methods to innovative technologies. Food Res. Int. 162 https://doi.org/10.1016/j.foodres.2022.111801 (2022).
-
Sasaki, K. et al. Metabolomics platform with capillary electrophoresis coupled with high-resolution mass spectrometry for plasma analysis. Anal. Chem. 91, 1295–1301 (2019).
-
Takeda, H. et al. MS-DIAL 5 multimodal mass spectrometry data mining unveils lipidome complexities. Nat. Commun. 15, 9903 (2024).
-
BLIGH, E. G. & DYER, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
-
Tsugawa, H. et al. A lipidome landscape of aging in mice. Nat. Aging 4, 709–726 (2024).
-
Masuda, T., Tomita, M. & Ishihama, Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 7, 731–740 (2008).
-
Nakagami, H. StageTip-based HAMMOC, an efficient and inexpensive phosphopeptide enrichment method for plant shotgun phosphoproteomics. Methods Mol. Biol. 1072, 595–607 (2014).
-
Sugiyama, N. et al. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol. Cell Proteom. 6, 1103–1109 (2007).
-
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
-
Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).
-
da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020).
-
Yu, F., Haynes, S. E. & Nesvizhskii, A. I. IonQuant enables accurate and sensitive label-free quantification with FDR-controlled match-between-runs. Mol. Cell Proteom. 20, 100077 (2021).
-
Pang, Z. Q. et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 52, W398–W406 (2024).
