References
-
Piasecka, A., Jedrzejczak-Rey, N. & Bednarek, P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206, 948–964 (2015).
-
Kuc, J. Phytoalexins, stress metabolism, and disease resistance in plants. Annu. Rev. Phytopathol. 33, 275–297 (1995).
-
Cooper, B., Campbell, K. B. & Garrett, W. M. Salicylic acid and phytoalexin induction by a bacterium that causes halo blight in beans. Phytopathology 112, 1766–1775 (2022).
-
Thomma, B. P. H. J., Nelissen, I., Eggermont, K. & Broekaert, W. F. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis Thaliana to the fungus alternaria brassicicola. Plant J. 19, 163–171 (1999).
-
Glazebrook, J. & Ausubel, F. M. Isolation of phytoalexin-deficient mutants of Arabidopsis Thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. U S A. 91, 8955–8959 (1994).
-
Graham, T. L., Graham, M. Y., Subramanian, S. & Yu, O. RNAi Silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in phytophthora Sojae infected tissues. Plant. Physiol. 144, 728–740 (2007).
-
Hain, R. et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361, 153–156 (1993).
-
He, X. Z. & Dixon, R. A. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4’-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant. Cell. 12, 1689–1702 (2000).
-
Ahuja, I., Kissen, R. & Bones, A. M. Phytoalexins in defense against pathogens. Trends Plant. Sci. 17, 73–90 (2012).
-
Kim, M., Han, J. & Kim, S. U. Isoflavone daidzein: chemistry and bacterial metabolism. J. Appl. Biol. Chem. 51, 253–261 (2008).
-
Ogawara, H., Akiyama, T., Ishida, J., Watanabe, S. & Suzuki, K. A specific inhibitor for tyrosine protein kinase from Pseudomonas. J. Antibiot. 39, 606–608 (1986).
-
Akiyama, T. et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262, 5592–5595 (1987).
-
Xagorari, A. et al. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and Proinflammatory cytokine production in macrophages. J. Pharmacol. Exp. Ther. 296, 181–187 (2001).
-
Nakashima, S., Koike, T. & Nozawa, Y. Genistein, a protein tyrosine kinase inhibitor, inhibits thromboxane A2-mediated human platelet responses. Mol. Pharmacol. 39, 475–480 (1991).
-
Hong, H., Landauer, M. R., Foriska, M. A. & Ledney, G. D. Antibacterial activity of the soy isoflavone genistein. J. Basic Microbiol. 46, 329–335 (2006).
-
Wells, C. L., Jechorek, R. P., Kinneberg, K. M., Debol, S. M. & Erlandsen, S. L. The isoflavone genistein inhibits internalization of enteric bacteria by cultured Caco-2 and HT-29 enterocytes. J. Nutr. 129, 634–640 (1999).
-
Verdrengh, M., Collins, L. V., Bergin, P. & Tarkowski, A. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect. 6, 86–92 (2004).
-
Cooper, B. et al. Quantitative proteomic analysis of Staphylococcus aureus treated with Punicalagin, a natural antibiotic from pomegranate that disrupts iron homeostasis and induces SOS. Proteomics 18, e1700461 (2018).
-
Cooper, B. The detriment of Salicylic acid to the Pseudomonas Savastanoi pv. phaseolicola proteome. Mol. Plant. Microbe Interact. 35, 814–824 (2022).
-
Cooper, B. Disruptive effects of Resveratrol on a bacterial pathogen of beans. J. Proteome Res. 22, 204–214 (2023).
-
Cooper, B., Yang, R. & Campbell, K. B. Indole alkaloid production by the halo blight bacterium treated with the phytoalexin genistein. Phytopathology 114, 1196–1205 (2024).
-
Kosslak, R. M., Bookland, R., Barkei, J., Paaren, H. E. & Appelbaum, E. R. Induction of Bradyrhizobium Japonicum common Nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. U S A. 84, 7428–7432 (1987).
-
Morris, P. F., Bone, E. & Tyler, B. M. Chemotropic and contact responses of phytophthora Sojae hyphae to soybean isoflavonoids and artificial substrates. Plant. Physiol. 117, 1171–1178 (1998).
-
Cooper, B., Campbell, K. B., Beard, H. S., Garrett, W. M. & Ferreira, M. E. The proteomics of resistance to halo blight in common bean. Mol. Plant. Microbe Interact. 33, 1161–1175 (2020).
-
Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).
-
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics: Official J. Metabolomic Soc. 3, 211–221 (2007).
-
Wheeler, A. W. Auxin-Like growth activity of phenylacetonitrile. Ann. Bot-London. 41, 867–872 (1977).
-
Perez, V. C., Zhao, H., Lin, M., Kim, J. & Occurrence function, and biosynthesis of the natural auxin phenylacetic acid (PAA) in plants. Plants (Basel) 12 (2023).
-
Djami-Tchatchou, A. T. et al. Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringae PtoDC3000 pathogenesis. Mol. plant-microbe Interactions: MPMI. 33, 1059–1071 (2020).
-
Degrassi, G. et al. Plant growth-promoting Pseudomonas Putida WCS358 produces and secretes four Cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr. Microbiol. 45, 250–254 (2002).
-
Ortiz-Castro, R. et al. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Natl. Acad. Sci. U S A. 108, 7253–7258 (2011).
-
Hoch, H. C., Staples, R. C., Whitehead, B., Comeau, J. & Wolf, E. D. Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235, 1659–1662 (1987).
-
Cooper, B., Beard, H. S., Garrett, W. M. & Campbell, K. B. Benzothiadiazole conditions the bean proteome for immunity to bean rust. Mol. Plant. Microbe Interact. 33, 600–611 (2020).
-
Bernsdorff, F. et al. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via Salicylic acid-Dependent and -Independent pathways. Plant. Cell. 28, 102–129 (2016).
-
Klessig, D. F., Choi, H. W. & Dempsey, D. A. Systemic acquired resistance and Salicylic acid: Past, Present, and future. Mol. Plant. Microbe Interact. 31, 871–888 (2018).
-
Jirage, D. et al. Constitutive Salicylic acid-dependent signaling in cpr1 and cpr6 mutants requires PAD4. Plant. J. 26, 395–407 (2001).
-
Wang, W. et al. An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell. Host Microbe. 27, 601–613e607 (2020).
-
Ngou, B. P. M., Ding, P. & Jones, J. D. G. Thirty years of resistance: Zig-zag through the plant immune system. Plant. Cell. 34, 1447–1478 (2022).
-
Cooper, B., Beard, H. S., Yang, R., Garrett, W. M. & Campbell, K. B. Bacterial immobilization and toxicity induced by a bean plant immune system. J. Proteome Res. 20, 3664–3677 (2021).
-
O’Leary, B. M. et al. Early changes in Apoplast composition associated with defence and disease in interactions between phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae Pv. phaseolicola. Plant. Cell. Environ. 39, 2172–2184 (2016).
-
Freeman, B. C. & Beattie, G. A. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis Thaliana. Mol. Plant. Microbe Interact. 22, 857–867 (2009).
-
Yamada, K., Saijo, Y., Nakagami, H. & Takano, Y. Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354, 1427–1430 (2016).
-
Parniske, M., Ahlborn, B. & Werner, D. Isoflavonoid-inducible resistance to the phytoalexin Glyceollin in soybean rhizobia. J. Bacteriol. 173, 3432–3439 (1991).
-
Kapadia, C. et al. Pseudomonas aeruginosa inhibits quorum-sensing mechanisms of soft rot pathogen Lelliottia Amnigena RCE to regulate its virulence factors and biofilm formation. Front. Microbiol. 13, 977669 (2022).
-
Wu, L., Wu, H., Chen, L., Zhang, H. & Gao, X. Induction of systemic disease resistance in Nicotiana benthamiana by the cyclodipeptides cyclo (l-Pro-l-Pro) and cyclo (d-Pro-d-Pro). Mol. Plant Pathol. 18, 67–74 (2017).
-
Minen, R. I. et al. Characterization of the cyclic dipeptide cyclo(His-Pro) in arabidopsis. Plant Physiol. 198 (2025).
-
Cooper, B. & Yang, R. Genomic resources for Pseudomonas Savastanoi pv. phaseolicola races 5 and 8. Phytopathology 111, 893–895 (2021).
-
Cooper, B. & Yang, R. An assessment of acquirex and compound discoverer software 3.3 for non-targeted metabolomics. Sci. Rep. 14, 4841 (2024).
-
Lee, J. et al. Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus. Mol. Cell. Proteom. 8, 19–31 (2009).
